Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(6): 6336-6343, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30652465

RESUMO

High-quality graphene grown on metal-free substrates represents a vital milestone that provides an atomic clean interface and a complementary metal-oxide-semiconductor-compatible manufacturing process for electronic applications. We report a scalable approach to fabricate radio frequency field-effect transistors with a graphene channel grown directly on the sapphire substrate using the technique of remote-catalyzed chemical vapor deposition (CVD). A mushroom-shaped AlO x top gate is used to allow the self-aligned drain/source contacts, yielding remarkable increase of device transconductance and reduction of the associated parasitic resistance. The quality of thus-grown graphene is reflected in the high extrinsic cutoff frequency and maximum oscillation frequency of 10.1 and 5.6 GHz for the graphene channel of length 200 nm and width 80 µm, respectively, potentially comparable with those of transferred CVD graphene at the same channel length and holding promise for applications in high-speed wireless communications.

2.
Nano Lett ; 17(1): 494-500, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28005382

RESUMO

Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.

3.
Phys Rev Lett ; 115(20): 206803, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613462

RESUMO

To control the spin state of an individual atom is an ultimate goal for spintronics. A single atom magnet, which may lead to a supercapacity memory device if realized, requires the high-spin state of an isolated individual atom. Here, we demonstrate the realization of well isolated transition metal (TM) atoms fixed at atomic defects sparsely dispersed in graphene. Core-level electron spectroscopy clearly reveals the high-spin state of the individual TM atoms at the divacancy or edge of the graphene layer. We also show for the first time that the spin state of single TM atoms systematically varies with the coordination of neighboring nitrogen or oxygen atoms. These structures can be thus regarded as the smallest components of spintronic devices with controlled magnetic behavior.

4.
Nano Lett ; 15(11): 7408-13, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26488153

RESUMO

High density and controllable nitrogen doping in graphene is a critical issue to realize high performance graphene-based devices. In this paper, we demonstrate an efficient method to selectively produce graphitic-N and pyridinic-N defects in graphene by using the mixture plasma of ozone and nitrogen. The atomic structure, electronic structure, and dynamic behavior of these nitrogen defects are systematically studied at the atomic level by using a scanning transmission electron microscopy. The pyridinic-N exhibits higher chemical activity and tends to trap a series of transition metal atoms (Mg, Al, Ca, Ti, Cr, Mn, and Fe) as individual atoms.

5.
Nat Commun ; 6: 6736, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25832503

RESUMO

As defects frequently govern the properties of crystalline solids, the precise microscopic knowledge of defect atomic structure is of fundamental importance. We report a new class of point defects in single-layer transition metal dichalcogenides that can be created through 60° rotations of metal-chalcogen bonds in the trigonal prismatic lattice, with the simplest among them being a three-fold symmetric trefoil-like defect. The defects, which are inherently related to the crystal symmetry of transition metal dichalcogenides, can expand through sequential bond rotations, as evident from in situ scanning transmission electron microscopy experiments, and eventually form larger linear defects consisting of aligned 8-5-5-8 membered rings. First-principles calculations provide insights into the evolution of rotational defects and show that they give rise to p-type doping and local magnetic moments, but weakly affect mechanical characteristics of transition metal dichalcogenides. Thus, controllable introduction of rotational defects can be used to engineer the properties of these materials.

6.
Nano Lett ; 12(3): 1379-84, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22332771

RESUMO

Direct deposition of high-quality graphene layers on insulating substrates such as SiO(2) paves the way toward the development of graphene-based high-speed electronics. Here, we describe a novel growth technique that enables the direct deposition of graphene layers on SiO(2) with crystalline quality potentially comparable to graphene grown on Cu foils using chemical vapor deposition (CVD). Rather than using Cu foils as substrates, our approach uses them to provide subliming Cu atoms in the CVD process. The prime feature of the proposed technique is remote catalyzation using floating Cu and H atoms for the decomposition of hydrocarbons. This allows for the direct graphitization of carbon radicals on oxide surfaces, forming isolated low-defect graphene layers without the need for postgrowth etching or evaporation of the metal catalyst. The defect density of the resulting graphene layers can be significantly reduced by tuning growth parameters such as the gas ratios, Cu surface areas, and substrate-to-Cu distance. Under optimized conditions, graphene layers with nondiscernible Raman D peaks can be obtained when predeposited graphite flakes are used as seeds for extended growth.


Assuntos
Cobre/química , Cristalização/métodos , Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Dióxido de Silício/química , Catálise , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...