Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biophotonics ; 16(4): e202200295, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36413066

RESUMO

As the only vascular tissue that can be directly viewed in vivo, retinal vessels are medically important in assisting the diagnosis of ocular and cardiovascular diseases. They generally appear as different morphologies and uneven thickness in fundus images. Therefore, the single-scale segmentation method may fail to capture abundant morphological features, suffering from the deterioration in vessel segmentation, especially for tiny vessels. To alleviate this issue, we propose a multi-scale channel fusion and spatial activation network (MCFSA-Net) for retinal vessel segmentation with emphasis on tiny ones. Specifically, the Hybrid Convolution-DropBlock (HC-Drop) is first used to extract deep features of vessels and construct multi-scale feature maps by progressive down-sampling. Then, the Channel Cooperative Attention Fusion (CCAF) module is designed to handle different morphological vessels in a multi-scale manner. Finally, the Global Spatial Activation (GSA) module is introduced to aggregate global feature information for improving the attention on tiny vessels in the spatial domain and realizing effective segmentation for them. Experiments are carried out on three datasets including DRIVE, CHASE_DB1, and STARE. Our retinal vessel segmentation method achieves Accuracy of 96.95%, 97.57%, and 97.83%, and F1 score of 82.67%, 81.82%, and 82.95% in the above datasets, respectively. Qualitative and quantitative analysis show that the proposed method outperforms current advanced vessel segmentation methods, especially for tiny vessels.


Assuntos
Algoritmos , Doenças Cardiovasculares , Humanos , Vasos Retinianos/diagnóstico por imagem , Fundo de Olho , Manejo de Espécimes , Processamento de Imagem Assistida por Computador/métodos
2.
J Healthc Eng ; 2021: 9929684, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136113

RESUMO

Surface electromyography- (sEMG-) based gesture recognition is widely used in rehabilitation training, artificial prosthesis, and human-computer interaction. The purpose of this study is to simplify the sEMG devices by reducing channels while achieving comparably high gesture recognition accuracy. We propose a compound channel selection scheme by combining the variable selection algorithms based on multitask sparse representation (MTSR) and minimum Redundancy Maximum Relevance (mRMR). Specifically, channelwise features are first extracted to compose channel-feature paired variables, for which variable selection procedures by MTSR and mRMR are carried out, respectively. Then, we rank all the channels according to their occurrences in each variable selection procedure and figure out a certain number of informative channels by fusing these rankings of channels. Finally, the gesture classification performance using the selected channels is evaluated by the support vector machine (SVM) classifier. Experiment results validate the effectiveness of this proposed method.


Assuntos
Algoritmos , Gestos , Eletromiografia/métodos , Humanos , Máquina de Vetores de Suporte
3.
Front Neurosci ; 12: 959, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618582

RESUMO

High-order correlation has recently been proposed to model brain functional connectivity network (FCN) for identifying neurological disorders, such as mild cognitive impairment (MCI) and autism spectrum disorder (ASD). In practice, the high-order FCN (HoFCN) can be derived from multiple low-order FCNs that are estimated separately in a series of sliding windows, and thus it in fact provides a way of integrating dynamic information encoded in a sequence of low-order FCNs. However, the estimation of low-order FCN may be unreliable due to the fact that the use of limited volumes/samples in a sliding window can significantly reduce the statistical power, which in turn affects the reliability of the resulted HoFCN. To address this issue, we propose to enhance HoFCN based on a regularized learning framework. More specifically, we first calculate an initial HoFCN using a recently developed method based on maximum likelihood estimation. Then, we learn an optimal neighborhood network of the initially estimated HoFCN with sparsity and modularity priors as regularizers. Finally, based on the improved HoFCNs, we conduct experiments to identify MCI and ASD patients from their corresponding normal controls. Experimental results show that the proposed methods outperform the baseline methods, and the improved HoFCNs with modularity prior consistently achieve the best performance.

4.
Neuroimage ; 141: 399-407, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27485752

RESUMO

Functional brain network analysis has become one principled way of revealing informative organization architectures in healthy brains, and providing sensitive biomarkers for diagnosis of neurological disorders. Prior to any post hoc analysis, however, a natural issue is how to construct "ideal" brain networks given, for example, a set of functional magnetic resonance imaging (fMRI) time series associated with different brain regions. Although many methods have been developed, it is currently still an open field to estimate biologically meaningful and statistically robust brain networks due to our limited understanding of the human brain as well as complex noises in the observed data. Motivated by the fact that the brain is organized with modular structures, in this paper, we propose a novel functional brain network modeling scheme by encoding a modularity prior under a matrix-regularized network learning framework, and further formulate it as a sparse low-rank graph learning problem, which can be solved by an efficient optimization algorithm. Then, we apply the learned brain networks to identify patients with mild cognitive impairment (MCI) from normal controls. We achieved 89.01% classification accuracy even with a simple feature selection and classification pipeline, which significantly outperforms the conventional brain network construction methods. Moreover, we further explore brain network features that contributed to MCI identification, and discovered potential biomarkers for personalized diagnosis.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Idoso , Algoritmos , Mapeamento Encefálico/métodos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA