Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Data Brief ; 45: 108770, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533287

RESUMO

This article presents data concerning STX18-AS1, a long noncoding RNA gene identified from a Genome-wide association study of Atrial Septal Defect (ASD). The data describes its expression patterns in human tissues and functions in regulating cardiomyocyte differentiation in vitro. STX18-AS1 is a lncRNA with a higher abundance in developing tissues, including hearts. Its transcription distribution within the embryonic hearts during key heart septation stages supports STX18-AS1's association with risk SNPs for ASD. The CRISPR stem cell pool in which STX18-AS1 was knocked down, showed reduced CM differentiation efficiency and lower expression of key cardiac transcriptional factors. This indicated its regulative role in supporting the lineage specification from cardiac mesoderm into cardiac progenitors and cardiomyocytes. These data can benefit the understanding of human embryonic heart developmental biology, and the time-course changes of cardiac transcriptional factors during in vitro cardiomyocyte differentiation from human embryonic stem cells.

3.
Cell Rep Med ; 3(2): 100501, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35243414

RESUMO

Analysis of large-scale human genomic data has yielded unexplained mutations known to cause severe disease in healthy individuals. Here, we report the unexpected recovery of a rare dominant lethal mutation in TPM1, a sarcomeric actin-binding protein, in eight individuals with large atrial septal defect (ASD) in a five-generation pedigree. Mice with Tpm1 mutation exhibit early embryonic lethality with disrupted myofibril assembly and no heartbeat. However, patient-induced pluripotent-stem-cell-derived cardiomyocytes show normal beating with mild myofilament defect, indicating disease suppression. A variant in TLN2, another myofilament actin-binding protein, is identified as a candidate suppressor. Mouse CRISPR knock-in (KI) of both the TLN2 and TPM1 variants rescues heart beating, with near-term fetuses exhibiting large ASD. Thus, the role of TPM1 in ASD pathogenesis unfolds with suppression of its embryonic lethality by protective TLN2 variant. These findings provide evidence that genetic resiliency can arise with genetic suppression of a deleterious mutation.


Assuntos
Comunicação Interatrial , Animais , Comunicação Interatrial/genética , Humanos , Camundongos , Proteínas dos Microfilamentos , Mutação/genética , Miofibrilas , Linhagem , Talina , Tropomiosina/genética
4.
Appl Clin Genet ; 13: 97-105, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368127

RESUMO

BACKGROUND: Previous studies have linked muscarinic M4 receptors (CHRM4) to schizophrenia. Specifically, the rs2067482 polymorphism was found to be highly associated with this disease. PURPOSE: To test whether rs2067482 and rs72910092 are potential risk factors for schizophrenia and/or pharmacogenetic markers for antipsychotic-induced tardive dyskinesia. PATIENTS AND METHODS: We genotyped DNA of 449 patients with schizophrenia and 134 healthy controls for rs2067482 and rs72910092 polymorphisms of the CHRM4 gene with the use of the MassARRAY® System by Agena Bioscience. Mann-Whitney test was used to compare qualitative traits and χ 2 test was used for categorical traits. RESULTS: The frequency of genotypes and alleles of rs72910092 did not differ between patients with schizophrenia and control subjects. We did not reveal any statistical differences for both rs2067482 and rs72910092 between schizophrenia patients with and without tardive dyskinesia. The frequency of the C allele of the polymorphic variant rs2067482 was significantly higher in healthy persons compared to patients with schizophrenia (OR=0.51, 95% CI [0.33-0.80]; p=0.003). Accordingly, the CC genotype was found significantly more often in healthy persons compared to patients with schizophrenia (OR=0.49, 95% CI [0.31-0.80]; p=0.010). CONCLUSION: Our study found the presence of the minor allele (T) of rs2067482 variant being associated with schizophrenia. We argue that the association of rs2067482 with schizophrenia may be via its regulatory effect on some other gene with protein kinase C and casein Kknase substrate in neurons 3 (PACSIN3) as a possible candidate. Neither rs2067482 nor rs72910092 is associated with tardive dyskinesia.

5.
Eur J Hum Genet ; 28(9): 1265-1273, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32327713

RESUMO

Deletion of a non-imprinted 500kb genomic region at chromosome 15q11.2, between breakpoints 1 and 2 of the Prader-Willi/Angelman locus (BP1-BP2 deletion), has been associated in previous studies with phenotypes including congenital cardiovascular malformations (CVM). Previous studies investigating association between BP1-BP2 deletion and CVM have tended to recruit cases with rarer and more severe CVM phenotypes; the impact of CVM on relatively unselected population cohorts, anticipated to contain chiefly less severe but commoner CHD phenotypes, is relatively unexplored. More precisely defining the impact of BP1-BP2 deletion on CVM risk could be useful to guide genetic counselling, since the deletion is frequently identified in the neurodevelopmental clinic. Using the UK Biobank (UKB) cohort of ~500,000 individuals, we identified individuals with CVM and investigated the association with deletions at the BP1-BP2 locus. In addition, we assessed the association of BP1-BP2 deletions with neuropsychiatric diagnoses, cognitive function and academic achievement. Cases of CVM had an increased prevalence of the deletion compared with controls (0.64%; OR = 1.73 [95% CI 1.08-2.75]; p = 0.03), as did those with neuropsychiatric diagnoses (0.68%; OR = 1.84 [95% CI 1.23-2.75]; p = 0.004). We conclude that BP1-BP2 deletion moderately increases the risk of the generally milder, but commoner, CVM phenotypes seen in this unselected population, in addition to its previously demonstrated association in case/control studies ascertained for CVM.


Assuntos
Cognição , Cardiopatias Congênitas/genética , Deficiência Intelectual/genética , Fenótipo , Malformações Vasculares/genética , Sucesso Acadêmico , Idoso , Aberrações Cromossômicas , Cromossomos Humanos Par 15/genética , Feminino , Fertilidade , Cardiopatias Congênitas/patologia , Humanos , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Malformações Vasculares/patologia
6.
Circ Genom Precis Med ; 12(10): 442-451, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613678

RESUMO

BACKGROUND: Most cases of congenital heart disease (CHD) are sporadic and nonsyndromic, with poorly understood etiology. Rare genetic variants have been found to affect the risk of sporadic, nonsyndromic CHD, but individual studies to date are of only moderate sizes, and none to date has incorporated the ohnolog status of candidate genes in the analysis. Ohnologs are genes retained from ancestral whole-genome duplications during evolution; multiple lines of evidence suggest ohnologs are overrepresented among dosage-sensitive genes. We integrated large-scale data on rare variants with evolutionary information on ohnolog status to identify novel genetic loci predisposing to CHD. METHODS: We compared copy number variants present in 4634 nonsyndromic CHD cases derived from publicly available data resources and the literature, and >27 000 healthy individuals. We analyzed deletions and duplications independently and identified copy number variant regions exclusive to cases. These data were integrated with whole-exome sequencing data from 829 sporadic, nonsyndromic patients with Tetralogy of Fallot. We placed our findings in an evolutionary context by comparing the proportion of vertebrate ohnologs in CHD cases and controls. RESULTS: Novel genetic loci in CHD cases were significantly enriched for ohnologs compared with the genome (χ2 test, P<0.0001, OR =1.253 [95% CI, 1.199-1.309]). We identified 54 novel candidate protein-coding genes supported by both: (1) copy number variant and whole-exome sequencing data; and (2) ohnolog status. CONCLUSIONS: We have identified new CHD candidate loci, and show for the first time that ohnologs are overrepresented among CHD genes. Incorporation of evolutionary metrics may be useful in refining candidate genes emerging from large-scale genetic evaluations of CHD.


Assuntos
Loci Gênicos , Cardiopatias Congênitas/genética , Variações do Número de Cópias de DNA , Bases de Dados Genéticas , Feminino , Duplicação Gênica , Humanos , Armazenamento e Recuperação da Informação , Masculino
7.
PLoS Genet ; 13(10): e1007068, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29084269

RESUMO

The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.


Assuntos
Vasos Coronários/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Pericárdio/crescimento & desenvolvimento , Animais , Diferenciação Celular/genética , Vasos Coronários/metabolismo , Embrião de Mamíferos , Transição Epitelial-Mesenquimal/genética , Humanos , Hidrocefalia/genética , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Camundongos , Camundongos Knockout , Mutação , Miocárdio/metabolismo , Pericárdio/metabolismo
8.
Hum Mol Genet ; 26(16): 3031-3045, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28521042

RESUMO

Hypoplastic left heart syndrome (HLHS) is among the most severe forms of congenital heart disease. Although the consensus view is that reduced flow through the left heart during development is a key factor in the development of the condition, the molecular mechanisms leading to hypoplasia of left heart structures are unknown. We have generated induced pluripotent stem cells (iPSC) from five HLHS patients and two unaffected controls, differentiated these to cardiomyocytes and identified reproducible in vitro cellular and functional correlates of the HLHS phenotype. Our data indicate that HLHS-iPSC have a reduced ability to give rise to mesodermal, cardiac progenitors and mature cardiomyocytes and an enhanced ability to differentiate to smooth muscle cells. HLHS-iPSC-derived cardiomyocytes are characterised by a lower beating rate, disorganised sarcomeres and sarcoplasmic reticulum and a blunted response to isoprenaline. Whole exome sequencing of HLHS fibroblasts identified deleterious variants in NOTCH receptors and other genes involved in the NOTCH signalling pathway. Our data indicate that the expression of NOTCH receptors was significantly downregulated in HLHS-iPSC-derived cardiomyocytes alongside NOTCH target genes confirming downregulation of NOTCH signalling activity. Activation of NOTCH signalling via addition of Jagged peptide ligand during the differentiation of HLHS-iPSC restored their cardiomyocyte differentiation capacity and beating rate and suppressed the smooth muscle cell formation. Together, our data provide firm evidence for involvement of NOTCH signalling in HLHS pathogenesis, reveal novel genetic insights important for HLHS pathology and shed new insights into the role of this pathway during human cardiac development.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico/metabolismo , Síndrome do Coração Esquerdo Hipoplásico/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Receptor Notch1/metabolismo , Estudos de Casos e Controles , Diferenciação Celular/fisiologia , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido/metabolismo , Masculino , Miócitos de Músculo Liso/metabolismo , Organogênese , Transdução de Sinais/fisiologia
9.
PLoS One ; 9(9): e107041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25269082

RESUMO

The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.


Assuntos
Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Receptor ErbB-2/genética , Potenciais de Ação , Animais , Função Atrial , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Receptor ErbB-2/metabolismo
10.
Development ; 138(13): 2807-21, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21652653

RESUMO

The embryonic head mesoderm gives rise to cranial muscle and contributes to the skull and heart. Prior to differentiation, the tissue is regionalised by the means of molecular markers. We show that this pattern is established in three discrete phases, all depending on extrinsic cues. Assaying for direct and first-wave indirect responses, we found that the process is controlled by dynamic combinatorial as well as antagonistic action of retinoic acid (RA), Bmp and Fgf signalling. In phase 1, the initial anteroposterior (a-p) subdivision of the head mesoderm is laid down in response to falling RA levels and activation of Fgf signalling. In phase 2, Bmp and Fgf signalling reinforce the a-p boundary and refine anterior marker gene expression. In phase 3, spreading Fgf signalling drives the a-p expansion of MyoR and Tbx1 expression along the pharynx, with RA limiting the expansion of MyoR. This establishes the mature head mesoderm pattern with markers distinguishing between the prospective extra-ocular and jaw skeletal muscles, the branchiomeric muscles and the cells for the outflow tract of the heart.


Assuntos
Padronização Corporal/fisiologia , Cabeça/embriologia , Mesoderma/embriologia , Mesoderma/metabolismo , Animais , Padronização Corporal/genética , Embrião de Galinha , Galinhas , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hibridização In Situ
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...