Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(9): 6085-6099, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38648720

RESUMO

Herein, we disclose a facile synthetic strategy to access an important class of drug molecules that contain chiral 1,2-amino alcohol functionality utilizing highly effective ruthenium-catalyzed asymmetric transfer hydrogenation of unprotected α-ketoamines. Recently, the COVID-19 pandemic has caused a crisis of shortage of many important drugs, especially norepinephrine and epinephrine, for the treatment of anaphylaxis and hypotension because of the increased demand. Unfortunately, the existing technologies are not fulfilling the worldwide requirement due to the existing lengthy synthetic protocols that require additional protection and deprotection steps. We identified a facile synthetic protocol via a highly enantioselective one-step process for epinephrine and a two-step process for norepinephrine starting from unprotected α-ketoamines 1b and 1a, respectively. This newly developed enantioselective ruthenium-catalyzed asymmetric transfer hydrogenation was extended to the synthesis of many 1,2-amino alcohol-containing drug molecules such as phenylephrine, denopamine, norbudrine, and levisoprenaline, with enantioselectivities of >99% ee and high isolated yields.


Assuntos
Amino Álcoois , Rutênio , Hidrogenação , Catálise , Amino Álcoois/química , Amino Álcoois/síntese química , Rutênio/química , Estereoisomerismo , Estrutura Molecular , Aminas/química
2.
Org Lett ; 26(14): 2751-2757, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37486800

RESUMO

We report a new class of highly effective, benzooxaphosphole-based, water-soluble ligands in the application of Suzuki-Miyaura cross-coupling reactions for sterically hindered substrates in aqueous media. The catalytic activities of the coupling reactions were greatly enhanced by the addition of catalytic amounts of organic phase transfer reagents, such as tetraglyme and tetrabutylammonium bromide. The optimized general protocol can be conducted with a low catalyst load, thereby providing a practical solution for these reactions. The viability of this new Suzuki-Miyaura protocol was demonstrated with various substrates to generate important building blocks, including heterocycles, for the synthesis of biologically active compounds.

3.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164376

RESUMO

There are numerous pyrazine and phenazine compounds that demonstrate biological activities relevant to the treatment of disease. In this review, we discuss pyrazine and phenazine agents that have shown potential therapeutic value, including several clinically used agents. In addition, we cover some basic science related to pyrazine and phenazine heterocycles, which possess interesting reactivity profiles that have been on display in numerous cases of innovative total synthesis approaches, synthetic methodologies, drug discovery efforts, and medicinal chemistry programs. The majority of this review is focused on presenting instructive total synthesis and medicinal chemistry efforts of select pyrazine and phenazine compounds, and we believe these incredible heterocycles offer promise in medicine.


Assuntos
Química Farmacêutica , Descoberta de Drogas/métodos , Compostos Heterocíclicos/síntese química , Fenazinas/química , Pirazinas/química , Humanos
4.
ACS Infect Dis ; 6(2): 159-167, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31913597

RESUMO

Select natural products are ideal starting points for ring distortion, or the dramatic altering of inherently complex molecules through short synthetic pathways, to generate an array of novel compounds with diverse skeletal architectures. A major goal of our ring distortion approach is to re-engineer the biological activity of indole alkaloids to identify new compounds with diverse biological activities in areas of significance to human health and medicine. In this study, we re-engineered the biological activity of the indole alkaloid yohimbine through ring rearrangement and ring cleavage synthesis pathways to discover new series of antiplasmodial agents. One new compound, Y7j, was found to demonstrate good potency against chloroquine-resistant Plasmodium falciparum Dd2 cells (EC50 = 0.33 µM) without eliciting cytotoxicity against HepG2 cells (EC50 > 40 µM). Y7j demonstrated stage-specific action against parasites at the late ring/trophozoite stage. A series of analogues was synthesized to gain structure-activity relationship insights, and we learned that both benzyl groups of Y7j are required for activity and fine-tuning of antiplasmodial activities could be accomplished by changing substitution patterns on the benzyl moieties. This study demonstrates the potential for ring distortion to drive new discoveries and change paradigms in chemical biology and drug discovery.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Produtos Biológicos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Ioimbina/química , Ioimbina/farmacologia , Produtos Biológicos/química , Cloroquina/farmacologia , Resistência a Medicamentos , Células Hep G2 , Humanos , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Trofozoítos/efeitos dos fármacos
5.
Mol Ther Nucleic Acids ; 16: 505-518, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071527

RESUMO

The therapeutic promise of small-RNA therapeutics is limited, not only by the lack of delivery vehicles, but also by the inability of the small RNAs to reach intracellular compartments where they can be biologically active. We previously reported successful delivery of functionally active miRNAs via receptor-mediated endocytosis. This type of targeted therapy still faces a major challenge in the delivery field: endosomal sequestration. Here, a new method has been developed to promote endosomal escape of delivered miRNA. The strategy relies on the difference in solute contents between nascent endosomes and the cytoplasm; early endosomes are rich in sodium ions, whereas the intracellular fluid is rich is potassium ions. Exploiting this difference through favoring the influx of potassium into the endosomes without the exchange of osmotically active sodium, results in an osmotic differential leading to the endosomes swelling and bursting. One molecule that is able to exchange potassium for an osmotically inactive hydrogen ion is the ionophore nigericin. Through generating an intramolecular miRNA delivery vehicle, containing a ligand, in this case folate and nigericin, we enabled the escape of folate-RNA conjugates from their entrapping endosomes into the cytoplasm where they bound the RNA-induced silencing complex and activated the RNAi response.

6.
J Am Chem Soc ; 140(31): 9868-9881, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001133

RESUMO

A stereogenic center, placed at an exocyclic location next to a chiral carbon in a ring to which it is attached, is a ubiquitous structural motif seen in many bioactive natural products, including di- and triterpenes and steroids. Installation of these centers has been a long-standing problem in organic chemistry. Few classes of compounds illustrate this problem better than serrulatanes and amphilectanes, which carry multiple methyl-bearing exocyclic chiral centers. Nickel-catalyzed asymmetric hydrovinylation (AHV) of vinylarenes and 1,3-dienes such as 1-vinylcycloalkenes provides an exceptionally facile way of introducing these chiral centers. This Article documents our efforts to demonstrate the generality of AHV to access not only the natural products but also their various diastereoisomeric derivatives. Key to success here is the availability of highly tunable phosphoramidite Ni(II) complexes useful for overcoming the inherent selectivity of the chiral intermediates. The yields for hydrovinylation (HV) reactions are excellent, and selectivities are in the range of 92-99% for the desired isomers. Discovery of novel, configurationally fluxional, yet sterically less demanding 2,2'-biphenol-derived phosphoramidite Ni complexes (fully characterized by X-ray) turned out to be critical for success in several HV reactions. We also report a less spectacular yet equally important role of solvents in a metal-ammonia reduction for the installation of a key benzylic chiral center. Starting with simple oxygenated styrene derivatives, we iteratively install the various exocyclic chiral centers present in typical serrulatane [e.g., a (+)- p-benzoquinone natural product, elisabethadione, nor-elisabethadione, helioporin D, a known advanced intermediate for the synthesis of colombiasin and elisapterosin] and amphilectane [e.g., A-F, G-J, and K,L pseudopterosins] derivatives. A concise table showing various synthetic approaches to these molecules is included in the Supporting Information. Our attempts to synthesize a hitherto elusive target, elisabethin A, led to a stereoselective, biomimetic route to pseudopterosin A-F aglycones.


Assuntos
Diterpenos/síntese química , Compostos de Vinila/química , Catálise , Ciclização , Diterpenos/química , Compostos Organofosforados/química , Estereoisomerismo
7.
Sci Transl Med ; 9(401)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28768807

RESUMO

MicroRNAs are small RNAs that negatively regulate gene expression posttranscriptionally. Because changes in microRNA expression can promote or maintain disease states, microRNA-based therapeutics are being evaluated extensively. Unfortunately, the therapeutic potential of microRNA replacement is limited by deficient delivery vehicles. In this work, microRNAs are delivered in the absence of a protective vehicle. The method relies on direct attachment of microRNAs to folate (FolamiR), which mediates delivery of the conjugated microRNA into cells that overexpress the folate receptor. We show that the tumor-suppressive FolamiR, FolamiR-34a, is quickly taken up both by triple-negative breast cancer cells in vitro and in vivo and by tumors in an autochthonous model of lung cancer and slows their progression. This method delivers microRNAs directly to tumors in vivo without the use of toxic vehicles, representing an advance in the development of nontoxic, cancer-targeted therapeutics.


Assuntos
Ácido Fólico/metabolismo , Técnicas de Transferência de Genes , MicroRNAs/administração & dosagem , Células A549 , Animais , Neoplasias da Mama/terapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Feminino , Marcação de Genes , Humanos , Imunocompetência , Ligantes , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...