Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(D1): D536-D544, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37904608

RESUMO

The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network-all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
2.
Gigascience ; 112022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36448847

RESUMO

While scientists can often infer the biological function of proteins from their 3-dimensional quaternary structures, the gap between the number of known protein sequences and their experimentally determined structures keeps increasing. A potential solution to this problem is presented by ever more sophisticated computational protein modeling approaches. While often powerful on their own, most methods have strengths and weaknesses. Therefore, it benefits researchers to examine models from various model providers and perform comparative analysis to identify what models can best address their specific use cases. To make data from a large array of model providers more easily accessible to the broader scientific community, we established 3D-Beacons, a collaborative initiative to create a federated network with unified data access mechanisms. The 3D-Beacons Network allows researchers to collate coordinate files and metadata for experimentally determined and theoretical protein models from state-of-the-art and specialist model providers and also from the Protein Data Bank.


Assuntos
Metadados , Registros , Sequência de Aminoácidos , Bases de Dados de Proteínas , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...