Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(8): e1009757, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34449766

RESUMO

To complete mitosis, the bridge that links the two daughter cells needs to be cleaved. This step is carried out by the endosomal sorting complex required for transport (ESCRT) machinery. AKTIP, a protein discovered to be associated with telomeres and the nuclear membrane in interphase cells, shares sequence similarities with the ESCRT I component TSG101. Here we present evidence that during mitosis AKTIP is part of the ESCRT machinery at the midbody. AKTIP interacts with the ESCRT I subunit VPS28 and forms a circular supra-structure at the midbody, in close proximity with TSG101 and VPS28 and adjacent to the members of the ESCRT III module CHMP2A, CHMP4B and IST1. Mechanistically, the recruitment of AKTIP is dependent on MKLP1 and independent of CEP55. AKTIP and TSG101 are needed together for the recruitment of the ESCRT III subunit CHMP4B and in parallel for the recruitment of IST1. Alone, the reduction of AKTIP impinges on IST1 and causes multinucleation. Our data altogether reveal that AKTIP is a component of the ESCRT I module and functions in the recruitment of ESCRT III components required for abscission.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Mitose/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ciclo Celular/metabolismo , Citocinese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Células HeLa , Humanos , Transporte Proteico , Fuso Acromático/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Lipid Res ; 54(6): 1630-1643, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23526831

RESUMO

Lipocalin prostaglandin D synthase (L-PGDS) regulates synthesis of an important inflammatory and signaling mediator, prostaglandin D2 (PGD2). Here, we used structural, biophysical, and biochemical approaches to address the mechanistic aspects of substrate entry, catalysis, and product exit of this enzyme. Structure of human L-PGDS was solved in a complex with a substrate analog (SA) and in ligand-free form. Its catalytic Cys 65 thiol group was found in two different conformations, each making a distinct hydrogen bond network to neighboring residues. These help in elucidating the mechanism of the cysteine nucleophile activation. Electron density for ligand observed in the active site defined the substrate binding regions, but did not allow unambiguous fitting of the SA. To further understand ligand binding, we used NMR spectroscopy to map the binding sites and to show the dynamics of protein-substrate and protein-product interactions. A model for ligand binding at the catalytic site is proposed, showing a second binding site involved in ligand exit and entry. NMR chemical shift perturbations and NMR resonance line-width alterations (observed as changes of intensity in two-dimensional cross-peaks in [¹H,¹5N]-transfer relaxation optimization spectroscopy) for residues at the Ω loop (A-B loop), E-F loop, and G-H loop besides the catalytic sites indicate involvement of these residues in ligand entry/egress.


Assuntos
Oxirredutases Intramoleculares/química , Lipocalinas/química , Simulação de Dinâmica Molecular , Catálise , Domínio Catalítico , Humanos , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Nat Cell Biol ; 12(8): 758-67, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20622870

RESUMO

We describe a genome-wide gain-of-function screen for regulators of NF-kappaB, and identify Rap1 (Trf2IP), as an essential modulator of NF-kappaB-mediated pathways. NF-kappaB is induced by ectopic expression of Rap1, whereas its activity is inhibited by Rap1 depletion. In addition to localizing on telomeres, mammalian Rap1 forms a complex with IKKs (IkappaB kinases), and is crucial for the ability of IKKs to be recruited to, and phosphorylate, the p65 subunit of NF-kappaB to make it transcriptionally competent. Rap1-mutant mice display defective NF-kappaB activation and are resistant to endotoxic shock. Furthermore, levels of Rap1 are positively regulated by NF-kappaB, and human breast cancers with NF-kappaB hyperactivity show elevated levels of cytoplasmic Rap1. Similar to inhibiting NF-kappaB, knockdown of Rap1 sensitizes breast cancer cells to apoptosis. These results identify the first cytoplasmic role of Rap1 and provide a mechanism through which it regulates an important signalling cascade in mammals, independent of its ability to regulate telomere function.


Assuntos
Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromatografia em Gel , Células HeLa , Humanos , Quinase I-kappa B/genética , Imuno-Histoquímica , Imunoprecipitação , Estimativa de Kaplan-Meier , Camundongos , NF-kappa B/genética , Fosforilação/genética , Fosforilação/fisiologia , Reação em Cadeia da Polimerase , Ligação Proteica/genética , Ligação Proteica/fisiologia , RNA Interferente Pequeno , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Análise Serial de Tecidos
4.
Nat Cell Biol ; 11(5): 659-66, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19377466

RESUMO

Post-translational modifications of NF-kappaB through phosphorylations enhance its transactivation potential. Much is known about the kinases that phosphorylate NF-kappaB, but little is known about the phosphatases that dephosphorylate it. By using a genome-scale siRNA screen, we identified the WIP1 phosphatase as a negative regulator of NF-kappaB signalling. WIP1-mediated regulation of NF-kappaB occurs in both a p38-dependent and independent manner. Overexpression of WIP1 resulted in decreased NF-kappaB activation in a dose-dependent manner, whereas WIP1 knockdown resulted in increased NF-kappaB function. We show that WIP1 is a direct phosphatase of Ser 536 of the p65 subunit of NF-kappaB. Phosphorylation of Ser 536 is known to be essential for the transactivation function of p65, as it is required for recruitment of the transcriptional co-activator p300. WIP1-mediated regulation of p65 regulated binding of NF-kappaB to p300 and hence chromatin remodelling. Consistent with our results, mice lacking WIP1 showed enhanced inflammation. These results provide the first genetic proof that a phosphatase directly regulates NF-kappaB signalling in vivo.


Assuntos
NF-kappa B/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Transdução de Sinais/fisiologia , Estruturas Animais/efeitos dos fármacos , Estruturas Animais/metabolismo , Animais , Linhagem Celular Tumoral , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Células HeLa , Humanos , Interleucina-1/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Mutantes , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2C , RNA Interferente Pequeno/genética , Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/citologia , Baço/efeitos dos fármacos , Baço/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Proc Natl Acad Sci U S A ; 104(43): 16940-5, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17939994

RESUMO

IkappaB kinase 2 (IKK2 or IKKbeta) is a component of the IKK complex that coordinates the cellular response to a diverse set of extracellular stimuli, including cytokines, microbial infection, and stress. In response to an external stimulus, the complex is activated, resulting in the phosphorylation and subsequent proteasome-mediated degradation of IkappaB proteins. This event triggers the nuclear import of the NF-kappaB transcription factor, which activates the transcription of genes that regulate a variety of fundamental biological processes, including immune response, cell survival, and development. Here, we define an essential role for IKK2 in normal mitotic progression and the maintenance of spindle bipolarity. Chemical and genetic perturbation of IKK2 promotes the formation of multipolar spindles and chromosome missegregation. Depletion of IKK2 results in the deregulation of Aurora A protein stability and coincident hyperactivation of a putative Aurora A substrate, the mitotic motor KIF11. These data support a function for IKK2 as an antagonist of Aurora A signaling during mitosis. Additionally, our results indicate a direct role for IKK2 in the maintenance of genome stability and underscore the potential for oncogenic consequences in targeting this kinase for therapeutic intervention.


Assuntos
Quinase I-kappa B/metabolismo , Fuso Acromático/enzimologia , Aneuploidia , Animais , Aurora Quinase A , Aurora Quinases , Ciclo Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/enzimologia , Células HeLa , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/deficiência , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos
6.
EMBO J ; 26(2): 600-12, 2007 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-17215868

RESUMO

ESCRT (endosomal sorting complex required for transport) complexes orchestrate efficient sorting of ubiquitinated transmembrane receptors to lysosomes via multivesicular bodies (MVBs). Yeast ESCRT-I and ESCRT-II interact directly in vitro; however, this association is not detected in yeast cytosol. To gain understanding of the molecular mechanisms of this link, we have characterised the ESCRT-I/-II supercomplex and determined the crystal structure of its interface. The link is formed by the vacuolar protein sorting (Vps)28 C-terminus (ESCRT-I) binding with nanomolar affinity to the Vps36-NZF-N zinc-finger domain (ESCRT-II). A hydrophobic patch on the Vps28-CT four-helix bundle contacts the hydrophobic knuckles of Vps36-NZF-N. Mutation of the ESCRT-I/-II link results in a cargo-sorting defect in yeast. Interestingly, the two Vps36 NZF domains, NZF-N and NZF-C, despite having the same core fold, use distinct surfaces to bind ESCRT-I or ubiquitinated cargo. We also show that a new component of ESCRT-I, Mvb12 (YGR206W), engages ESCRT-I directly with nanomolar affinity to form a 1:1:1:1 heterotetramer. Mvb12 does not affect the affinity of ESCRT-I for ESCRT-II in vitro. Our data suggest a complex regulatory mechanism for the ESCRT-I/-II link in yeast.


Assuntos
Complexos Multiproteicos/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático , Ligação Proteica , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/metabolismo , Xenopus laevis , Leveduras
7.
Biochem Soc Symp ; (74): 47-57, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17233579

RESUMO

Three large protein complexes known as ESCRT I, ESCRT II and ESCRT III drive the progression of ubiquitinated membrane cargo from early endosomes to lysosomes. Several steps in this process critically depend on PtdIns3P, the product of the class III phosphoinositide 3-kinase. Our work has provided insights into the architecture, membrane recruitment and functional interactions of the ESCRT machinery. The fan-shaped ESCRT I core and the trilobal ESCRT II core are essential to forming stable, rigid scaffolds that support additional, flexibly-linked domains, which serve as gripping tools for recognizing elements of the MVB (multivesicular body) pathway: cargo protein, membranes and other MVB proteins. With these additional (non-core) domains, ESCRT I grasps monoubiquitinated membrane proteins and the Vps36 subunit of the downstream ESCRT II complex. The GLUE (GRAM-like, ubiquitin-binding on Eap45) domain extending beyond the core of the ESCRT II complex recognizes PtdIns3P-containing membranes, monoubiquitinated cargo and ESCRT I. The structure of this GLUE domain demonstrates that it has a split PH (pleckstrin homology) domain fold, with a non-typical phosphoinositide-binding pocket. Mutations in the lipid-binding pocket of the ESCRT II GLUE domain cause a strong defect in vacuolar protein sorting in yeast.


Assuntos
Endossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos
8.
Cell ; 125(1): 99-111, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16615893

RESUMO

ESCRT complexes form the main machinery driving protein sorting from endosomes to lysosomes. Currently, the picture regarding assembly of ESCRTs on endosomes is incomplete. The structure of the conserved heterotrimeric ESCRT-I core presented here shows a fan-like arrangement of three helical hairpins, each corresponding to a different subunit. Vps23/Tsg101 is the central hairpin sandwiched between the other subunits, explaining the critical role of its "steadiness box" in the stability of ESCRT-I. We show that yeast ESCRT-I links directly to ESCRT-II, through a tight interaction of Vps28 (ESCRT-I) with the yeast-specific zinc-finger insertion within the GLUE domain of Vps36 (ESCRT-II). The crystal structure of the GLUE domain missing this insertion reveals it is a split PH domain, with a noncanonical lipid binding pocket that binds PtdIns3P. The simultaneous and reinforcing interactions of ESCRT-II GLUE domain with membranes, ESCRT-I, and ubiquitin are critical for ubiquitinated cargo progression from early to late endosomes.


Assuntos
Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Cromatografia em Gel , Cristalografia por Raios X , Complexos Endossomais de Distribuição Requeridos para Transporte , Lipídeos , Lipossomos/metabolismo , Lisossomos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Vesículas Transportadoras/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Dev Cell ; 7(4): 559-69, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15469844

RESUMO

ESCRT-I, -II, and -III protein complexes are sequentially recruited to endosomal membranes, where they orchestrate protein sorting and MVB biogenesis. In addition, they play a critical role in retrovirus budding. Structural understanding of ESCRT interaction networks is largely lacking. The 3.6 A structure of the yeast ESCRT-II core presented here reveals a trilobal complex containing two copies of Vps25, one copy of Vps22, and the C-terminal region of Vps36. Unexpectedly, the entire ESCRT-II core consists of eight repeats of a common building block, a "winged helix" domain. Two PPXY-motifs from Vps25 are involved in contacts with Vps22 and Vps36, and their mutation leads to ESCRT-II disruption. We show that purified ESCRT-II binds directly to the Vps20 component of ESCRT-III. Surprisingly, this binding does not require the protruding N-terminal coiled-coil of Vps22. Vps25 is the chief subunit responsible for Vps20 recruitment. This interaction dramatically increases binding of both components to lipid vesicles in vitro.


Assuntos
Cristalografia por Raios X , Endossomos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Escherichia coli/genética , Lipossomos/metabolismo , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica/genética , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular
10.
J Biol Chem ; 279(27): 28689-96, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15044434

RESUMO

The endosomal sorting complex required for transport (ESCRT-I) is a 350-kDa complex of three proteins, Vps23, Vps28, and Vps37. The N-terminal ubiquitin-conjugating enzyme E2 variant (UEV) domain of Vps23 is required for sorting ubiquitinated proteins into the internal vesicles of multivesicular bodies. UEVs are homologous to E2 ubiquitin ligases but lack the conserved cysteine residue required for catalytic activity. The crystal structure of the yeast Vps23 UEV in a complex with ubiquitin (Ub) shows the detailed interactions made with the bound Ub. Compared with the solution structure of the Tsg101 UEV (the human homologue of Vps23) in the absence of Ub, two loops that are conserved among the ESCRT-I UEVs move toward each other to grip the Ub in a pincer-like grasp. The contacts with the UEV encompass two adjacent patches on the surface of the Ub, one containing several hydrophobic residues, including Ile-8(Ub), Ile-44(Ub), and Val-70(Ub), and the second containing a hydrophilic patch including residues Asn-60(Ub), Gln-62(Ub), Glu-64(Ub). The hydrophobic Ub patch interacting with the Vps23 UEV overlaps the surface of Ub interacting with the Vps27 ubiquitin-interacting motif, suggesting a sequential model for ubiquitinated cargo binding by these proteins. In contrast, the hydrophilic patch encompasses residues uniquely interacting with the ESCRT-I UEV. The structure provides a detailed framework for design of mutants that can specifically affect ESCRT-I-dependent sorting of ubiquitinated cargo without affecting Vps27-mediated delivery of cargo to endosomes.


Assuntos
Endossomos/metabolismo , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae , Ubiquitina/química , Proteínas de Transporte Vesicular , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/metabolismo , Catálise , Cristalografia por Raios X , Cisteína/química , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Ubiquitina/metabolismo , Ultracentrifugação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA