Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 83(20): 3414-3427, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37463241

RESUMO

Multiple myeloma cells undergo metabolic reprogramming in response to the hypoxic and nutrient-deprived bone marrow microenvironment. Primary oncogenes in recurrent translocations might be able to drive metabolic heterogeneity to survive the microenvironment that can present new vulnerabilities for therapeutic targeting. t(4;14) translocation leads to the universal overexpression of histone methyltransferase NSD2 that promotes plasma cell transformation through a global increase in H3K36me2. Here, we identified PKCα as an epigenetic target that contributes to the oncogenic potential of NSD2. RNA sequencing of t(4;14) multiple myeloma cell lines revealed a significant enrichment in the regulation of metabolic processes by PKCα, and the glycolytic gene, hexokinase 2 (HK2), was transcriptionally regulated by PKCα in a PI3K/Akt-dependent manner. Loss of PKCα displaced mitochondria-bound HK2 and reversed sensitivity to the glycolytic inhibitor 3-bromopyruvate. In addition, the perturbation of glycolytic flux led to a metabolic shift to a less energetic state and decreased ATP production. Metabolomics analysis indicated lactate as a differential metabolite associated with PKCα. As a result, PKCα conferred resistance to the immunomodulatory drugs (IMiD) lenalidomide in a cereblon-independent manner and could be phenocopied by either overexpression of HK2 or direct supplementation of lactate. Clinically, t(4;14) patients had elevated plasma lactate levels and did not benefit from lenalidomide-based regimens. Altogether, this study provides insights into the epigenetic-metabolism cross-talk in multiple myeloma and highlights the opportunity for therapeutic intervention that leverages the distinct metabolic program in t(4;14) myeloma. SIGNIFICANCE: Aberrant glycolysis driven by NSD2-mediated upregulation of PKCα can be therapeutically exploited using metabolic inhibitors with lactate as a biomarker to identify high-risk patients who exhibit poor response towards IMiD-based regimens.


Assuntos
Mieloma Múltiplo , Humanos , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Lactatos/uso terapêutico , Lenalidomida/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fosfatidilinositol 3-Quinases , Proteína Quinase C-alfa/genética , Microambiente Tumoral
2.
Oncogene ; 41(14): 2106-2121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35190641

RESUMO

Recurrent cytogenetic abnormalities are the main hallmark of multiple myeloma (MM) and patients having 2 or more high-risk prognostic events are associated with extremely poor outcome. 17p13(del) and 1q21(gain) are critical and independent high-risk cytogenetic markers, however, the biological significance underlying the poor outcome in MM patients having co-occurrence of both these chromosomal aberrations has never been interrogated. Herein, we identified that patients harbouring concomitant 17p13(del) with 1q21(gain) demonstrated the worst prognosis as compared to patients with single- (either 17p13(del) or 1q21(gain)) and with no chromosomal events (WT for both chromosomal loci); and they are highly enriched for genomic instability (GI) signature. We discovered that the GI feature in the patients with concomitant 17p13(del)-1q21(gain) was recapitulating the biological properties of myeloma cells with co-existing p53-deficiency and NEIL1 mRNA-hyper-editing (associated with chromosome 17p and 1q, respectively) that have inherent DNA damage response (DDR) and persistent activation of Chk1 pathway. Importantly, this became a vulnerable point for therapeutic targeting whereby the cells with this co-abnormalities demonstrated hyper-sensitivity to siRNA- and pharmacological-mediated-Chk1 inhibition, as observed at both the in vitro and in vivo levels. Mechanistically, this was attributable to the synthetic lethal relationship between p53-NEIL1-Chk1 abnormalities. The Chk1 inhibitor (AZD7762) tested showed good synergism with standard-of-care myeloma drugs, velcade and melphalan, thus further reinforcing the translational potential of this therapeutic approach. In summary, combination of NEIL1-p53 abnormalities with an ensuing Chk1 activation could serve as an Achilles heel and predispose MM cells with co-existing 1q21(gain) and 17p13(del) to therapeutic vulnerability for Chk1 inhibition.


Assuntos
Quinase 1 do Ponto de Checagem , DNA Glicosilases , Mieloma Múltiplo , Proteína Supressora de Tumor p53 , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/genética , Aberrações Cromossômicas , Deleção Cromossômica , DNA Glicosilases/genética , Instabilidade Genômica , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mutações Sintéticas Letais , Proteína Supressora de Tumor p53/genética
3.
Blood Cancer J ; 11(4): 84, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927192

RESUMO

The emergence of various novel therapies over the last decade has changed the therapeutic landscape for multiple myeloma. While the clinical outcomes have improved significantly, the disease remains incurable, typically in patients with relapsed and refractory disease. Chimeric antigen receptor (CAR) T-cell therapies have achieved remarkable clinical success in B-cell malignancies. This scope of research has more recently been extended to the field of myeloma. While B-cell maturation antigen (BCMA) is currently the most well-studied CAR T antigen target in this disease, many other antigens are also undergoing intensive investigations. Some studies have shown encouraging results, whereas some others have demonstrated unfavorable results due to reasons such as toxicity and lack of clinical efficacy. Herein, we provide an overview of CAR T-cell therapies in myeloma, highlighted what has been achieved over the past decade, including the latest updates from ASH 2020 and discussed some of the challenges faced. Considering the current hits and misses of CAR T therapies, we provide a comprehensive analysis on the current manufacturing technologies, and deliberate on the future of CAR T-cell domain in MM.


Assuntos
Imunoterapia Adotiva/métodos , Mieloma Múltiplo/terapia , Receptores de Antígenos Quiméricos/uso terapêutico , Animais , Humanos , Imunoterapia Adotiva/efeitos adversos , Pesquisa Translacional Biomédica
4.
Leukemia ; 35(2): 346-359, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139858

RESUMO

Adenosine-to-inosine (A-to-I) editing is the most prevalent type of RNA editing in humans, mediated by the adenosine deaminases acting on RNA (ADARs). Physiologically, these enzymes are present in the nucleus and/or the cytoplasm, where they catalyze the conversion of adenosines (A) to inosines (I) on double-stranded mRNA molecules. Aberrant ADAR-mediated-editing is a prominent feature in a variety of cancers. Importantly, the biological functions of ADARs and its functional implications in hematological malignancies have recently been unraveled. In this review, we will highlight the functions of ADARs and their involvements in cancer, specifically in hematological malignancies. RNA editing-independent function of cellular processes by ADARs and the potential of developing novel therapeutic approaches revolving RNA editing will also be discussed.


Assuntos
Adenosina Desaminase/genética , Neoplasias Hematológicas/patologia , Edição de RNA , Proteínas de Ligação a RNA/genética , Adenosina Desaminase/metabolismo , Animais , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Humanos , Proteínas de Ligação a RNA/metabolismo
5.
Haematologica ; 105(5): 1391-1404, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31413087

RESUMO

1q21 amplification is an important prognostic marker in multiple myeloma. In this study we identified that IL6R (the interleukin-6 membrane receptor) and ADAR1 (an RNA editing enzyme) are critical genes located within the minimally amplified 1q21 region. Loss of individual genes caused suppression to the oncogenic phenotypes, the magnitude of which was enhanced when both genes were concomitantly lost. Mechanistically, IL6R and ADAR1 collaborated to induce a hyper-activation of the oncogenic STAT3 pathway. High IL6R confers hypersensitivity to interleukin-6 binding, whereas, ADAR1 forms a constitutive feed-forward loop with STAT3 in a P150-isoform-predominant manner. In this respect, ADAR1-P150 acts as a direct transcriptional target for STAT3 and this STAT3-induced-P150 in turn directly interacts with and stabilizes the former protein, leading to a larger pool of proteins acting as oncogenic transcription factors for pro-survival genes. The importance of both IL6R and ADAR1-P150 in STAT3 signaling was further validated when concomitant knockdown of both genes impeded IL6-induced-STAT3 pathway activation. Clinical evaluation of various datasets of myeloma patients showed that low expression of either one or both genes was closely associated with a compromised STAT3 signature, confirming the involvement of IL6R and ADAR1 in the STAT3 pathway and underscoring their essential role in disease pathogenesis. In summary, our findings highlight the complexity of the STAT3 pathway in myeloma, in association with 1q21 amplification. This study therefore reveals a novel perspective on 1q21 abnormalities in myeloma and a potential therapeutic target for this cohort of high-risk patients.


Assuntos
Mieloma Múltiplo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Humanos , Mieloma Múltiplo/genética , Isoformas de Proteínas/genética , Edição de RNA , Proteínas de Ligação a RNA/genética , Receptores de Interleucina-6 , Fator de Transcrição STAT3/genética
6.
Blood ; 132(12): 1304-1317, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30061158

RESUMO

DNA alterations have been extensively reported in multiple myeloma (MM); however, they cannot yet fully explain all the biological and molecular abnormalities in MM, which remains to this day an incurable disease with eventual emergence of refractory disease. Recent years have seen abnormalities at the RNA levels being reported to possess potential biological relevance in cancers. ADAR1-mediated A-to-I editing is an important posttranscriptional mechanism in human physiology, and the biological implication of its abnormality, especially at the global level, is underexplored in MM. In this study, we define the biological implications of A-to-I editing and how it contributes to MM pathogenesis. Here, we identified that the MM transcriptome is aberrantly hyperedited because of the overexpression of ADAR1. These events were associated with patients' survival independent of 1q21 amplifications and could affect patients' responsiveness to different treatment regimes. Our functional assays established ADAR1 to be oncogenic, driving cellular growth and proliferation in an editing-dependent manner. In addition, we identified NEIL1 (base-excision repair gene) as an essential and a ubiquitously edited ADAR1 target in MM. The recoded NEIL1 protein showed defective oxidative damage repair capacity and loss-of-function properties. Collectively, our data demonstrated that ADAR1-mediated A-to-I editing is both clinically and biologically relevant in MM. These data unraveled novel insights into MM molecular pathogenesis at the global RNA level.


Assuntos
Adenosina Desaminase/genética , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo/genética , Proteínas de Ligação a RNA/genética , Transcriptoma , Regulação para Cima , Animais , Linhagem Celular Tumoral , DNA Glicosilases/genética , Humanos , Camundongos , Camundongos SCID , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Prognóstico , Edição de RNA
7.
Oncotarget ; 7(38): 61806-61819, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27533450

RESUMO

Despite therapeutic advancement, multiple myeloma (MM) remains incurable with drug resistance being one of the main challenges in the clinic. Myeloma cells possess high protein secretory load, leading to increased intracellular endoplasmic reticulum (ER) stress. Hence, they are vulnerable to further perturbation to its protein homeostasis. In studying the therapeutic mechanism of PRIMA-1 (mutant-p53-reactivating-agent), we uncovered its novel p53-independent-mechanism that can be exploited for myeloma. Despite its inability in restoring the wild type-p53 protein conformation and transcriptional function in the mutant-p53-human-myeloma-cells, PRIMA-1 was efficacious against myeloma cells with differential p53 genotypes. Strikingly, cells without p53 expression demonstrated highest drug sensitivity. Genome-wide gene-expression analysis revealed the involvement of ER stress/UPR-pathway in inducing PRIMA-1-toxicity. UPR markers, HSP70, CHOP and GADD34, were significantly up-regulated, concomitantly with the induction of apoptosis. Furthermore, there was a global attenuation of protein synthesis, correlated with phospho-eIF2a up-regulation. Mechanistically, we identified that PRIMA-1 could cause the demethylation of TP73, through DNMT1 depletion, to subsequently enhance UPR. Of clinical significance, we observed that PRIMA-1 had additive therapeutic effects with another UPR-inducing-agent, bortezomib. Importantly, it can partially re-sensitize bortezomib-resistant cells to bortezomib. Given that MM is already stressed at the baseline in the ER, our results implicated that PRIMA-1 is a potential therapeutic option in MM by targeting its Achilles heel.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteína Tumoral p73/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Apoptose , Bortezomib/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular , Metilação de DNA , Endorribonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Estudo de Associação Genômica Ampla , Genótipo , Homeostase , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Resposta a Proteínas não Dobradas , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...