Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Graefes Arch Clin Exp Ophthalmol ; 261(11): 3335-3344, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37535181

RESUMO

PURPOSE: Advances in artificial intelligence (AI)-based named entity extraction (NER) have improved the ability to extract diagnostic entities from unstructured, narrative, free-text data in electronic health records. However, there is a lack of ready-to-use tools and workflows to encourage the use among clinicians who often lack experience and training in AI. We sought to demonstrate a case study for developing an automated registry of ophthalmic diseases accompanied by a ready-to-use low-code tool for clinicians. METHODS: We extracted deidentified electronic clinical records from a single centre's adult outpatient ophthalmology clinic from November 2019 to May 2022. We used a low-code annotation software tool (Prodigy) to annotate diagnoses and train a bespoke spaCy NER model to extract diagnoses and create an ophthalmic disease registry. RESULTS: A total of 123,194 diagnostic entities were extracted from 33,455 clinical records. After decapitalisation and removal of non-alphanumeric characters, there were 5070 distinct extracted diagnostic entities. The NER model achieved a precision of 0.8157, recall of 0.8099, and F score of 0.8128. CONCLUSION: We presented a case study using low-code artificial intelligence-based NLP tools to produce an automated ophthalmic disease registry. The workflow created a NER model with a moderate overall ability to extract diagnoses from free-text electronic clinical records. We have produced a ready-to-use tool for clinicians to implement this low-code workflow in their institutions and encourage the uptake of artificial intelligence methods for case finding in electronic health records.

2.
J Med Internet Res ; 25: e42789, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36881455

RESUMO

BACKGROUND: Strategies to improve the selection of appropriate target journals may reduce delays in disseminating research results. Machine learning is increasingly used in content-based recommender algorithms to guide journal submissions for academic articles. OBJECTIVE: We sought to evaluate the performance of open-source artificial intelligence to predict the impact factor or Eigenfactor score tertile using academic article abstracts. METHODS: PubMed-indexed articles published between 2016 and 2021 were identified with the Medical Subject Headings (MeSH) terms "ophthalmology," "radiology," and "neurology." Journals, titles, abstracts, author lists, and MeSH terms were collected. Journal impact factor and Eigenfactor scores were sourced from the 2020 Clarivate Journal Citation Report. The journals included in the study were allocated percentile ranks based on impact factor and Eigenfactor scores, compared with other journals that released publications in the same year. All abstracts were preprocessed, which included the removal of the abstract structure, and combined with titles, authors, and MeSH terms as a single input. The input data underwent preprocessing with the inbuilt ktrain Bidirectional Encoder Representations from Transformers (BERT) preprocessing library before analysis with BERT. Before use for logistic regression and XGBoost models, the input data underwent punctuation removal, negation detection, stemming, and conversion into a term frequency-inverse document frequency array. Following this preprocessing, data were randomly split into training and testing data sets with a 3:1 train:test ratio. Models were developed to predict whether a given article would be published in a first, second, or third tertile journal (0-33rd centile, 34th-66th centile, or 67th-100th centile), as ranked either by impact factor or Eigenfactor score. BERT, XGBoost, and logistic regression models were developed on the training data set before evaluation on the hold-out test data set. The primary outcome was overall classification accuracy for the best-performing model in the prediction of accepting journal impact factor tertile. RESULTS: There were 10,813 articles from 382 unique journals. The median impact factor and Eigenfactor score were 2.117 (IQR 1.102-2.622) and 0.00247 (IQR 0.00105-0.03), respectively. The BERT model achieved the highest impact factor tertile classification accuracy of 75.0%, followed by an accuracy of 71.6% for XGBoost and 65.4% for logistic regression. Similarly, BERT achieved the highest Eigenfactor score tertile classification accuracy of 73.6%, followed by an accuracy of 71.8% for XGBoost and 65.3% for logistic regression. CONCLUSIONS: Open-source artificial intelligence can predict the impact factor and Eigenfactor score of accepting peer-reviewed journals. Further studies are required to examine the effect on publication success and the time-to-publication of such recommender systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...