Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Biomater Adv ; 158: 213780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280287

RESUMO

Tissue engineered skin equivalents are increasingly recognized as potential alternatives to traditional skin models such as human ex vivo skin or animal skin models. However, most of the currently investigated human skin equivalents (HSEs) are constructed using mammalian collagen which can be expensive and difficult to extract. Fish skin is a waste product produced by fish processing industries and identified as a cost-efficient and sustainable source of type I collagen. In this work, we describe a method for generating highly stable HSEs based on fibrin fortified tilapia fish collagen. The fortified fish collagen (FFC) formulation is optimized to enable reproducible fabrication of full-thickness HSEs that undergo limited contraction, facilitating the incorporation of human donor-derived skin cells and formation of biomimetic dermal and epidermal layers. The morphology and barrier function of the FFC HSEs are compared with a commercial skin model and validated with immunohistochemical staining and transepithelial electrical resistance testing. Finally, the potential of a high throughput screening platform with FFC HSE is explored by scaling down its fabrication to 96-well format.


Assuntos
Ictiose Lamelar , Tilápia , Animais , Humanos , Pele , Colágeno , Epiderme , Colágeno Tipo I , Mamíferos
2.
Acta Biomater ; 173: 66-79, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38016510

RESUMO

Dental restorations are in increasing demand, yet their success rate strongly decreases after 5-10 years post-implantation, attributed in part to mismatching properties with the surrounding buccal environment that causes failures and wear. Among current research to address this issue, biomimetic approaches are promising. Nacre-like ceramic composites are particularly interesting because they combine multiple antagonistic properties making them more resistant to failure in harsh environment than other materials. With the rapid progress in 3D printing producing nacre-like structures has open up new opportunities not yet realised. In this paper, nacre-like composites of various compositions are reviewed in the context of hypothetical biomimetic dental restorations. Their structural, functional and biological properties are compared with those of dentin, enamel, and bone to determine which composition would be the most suitable for each of the 3 mineralized regions found in teeth. The role of complex microstructures and mineral orientations are discussed as well as 3D printing methods that allow the design and fabrication of such complex architectures. Finally, usage of these processes and anticipated prospects for next generation biomimetic dental replacements are discussed to suggest future research directions in this area. STATEMENT OF SIGNIFICANCE: With the current ageing population, dental health is a major issue and current dental restorations still have shortcomings. For the next generation of dental restorations, more biomimetic approaches would be desirable to increase their durability. Among current materials, nacre-like ceramic composites are interesting because they can approach the various structural properties found in the different parts of our teeth. Furthermore, it is also possible to embed self-sensing functionalities to enable monitoring of oral health. Finally, new recent 3D printing technologies now permit the fabrication of complex shapes with local compositions and local microstructures. With this current status of the research, we anticipate new dental restorations designs and highlight the remaining gaps and issues to address.


Assuntos
Nácar , Impressão Tridimensional , Cerâmica/química , Biomimética , Minerais
3.
Colloids Surf B Biointerfaces ; 231: 113537, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776773

RESUMO

Periosteum, the thin layer covering adjacent to bone containing specific architecture, is important for functional bone regeneration and remodeling. Synthetic periosteum investigated presently lacks the resemblance of natural periosteum, suffering from poor mechanical strength and cell attachment. Here, we report a newly-developed biomimetic film to function as synthetic periosteum. Based on poly(ε-caprolactone) (PCL), where surface wettability of the synthetic periosteum is enhanced by microtantalum (mTa) particle blending and after a cold drawing process, further obtains topographical anisotropy without any involvement of solvent. This new blend shows mechanical enhancement over pure PCL, with yield stress and elastic strain approaching the natural periosteum. A distinct degradation mechanism is proposed for the blend, and by seeding with mouse calvarial preosteoblasts, cell proliferation is promoted on surface of the drawn PCL but delayed on the mTa-blended PCL. However, cell mineralization is accelerated on the mTa-blended surface. This is less on the drawn PCL. The synergistical integration of cellular proliferation, alignment and osteogenic enhancement suggest that the cold drawn PCL/Ta blend has unique potential for developing into a synthetic periosteum and other tissue-engineering products.


Assuntos
Periósteo , Poliésteres , Animais , Camundongos , Engenharia Tecidual , Osteogênese , Alicerces Teciduais
4.
Acta Biomater ; 157: 49-66, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36427686

RESUMO

Diabetes mellitus is a global disease requiring long-term treatment and monitoring. At present, pancreas or islet transplantation is the only reliable treatment for achieving stable euglycemia in Type I diabetes patients. However, the shortage of viable pancreata for transplantation limits the use of this therapy for the majority of patients. Organ decellularization and recellularization is emerging as a promising solution to overcome the shortage of viable organs for transplantation by providing a potential alternative source of donor organs. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have been performed, and show promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we provide an overview of the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with an outlook on the remaining work that needs to be done in order to realize the goal of using this technology to create bioengineered pancreata for transplantation in diabetes patients. STATEMENT OF SIGNIFICANCE: Pancreas or islet transplantation is a means of providing insulin-independence in diabetes patients. However, due to the shortage of viable pancreata, whole-organ decellularization and recellularization is emerging as a promising solution to overcome organ shortage for transplantation. Several studies on decellularization and recellularization of rodent, porcine, and human pancreata have shown promise for generating usable decellularized pancreas scaffolds for subsequent recellularization and transplantation. In this state-of-the-art review, we highlight the latest advances in pancreas decellularization, recellularization, and revascularization. We also discuss clinical considerations such as potential transplantation sites, donor source, and immune considerations. We conclude with future work that needs to be done in order to realize clinical translation of bioengineered pancreata for transplantation in diabetes patients.


Assuntos
Diabetes Mellitus Tipo 1 , Engenharia Tecidual , Humanos , Animais , Suínos , Medicina Regenerativa , Alicerces Teciduais , Pâncreas , Matriz Extracelular
5.
Curr Opin Biotechnol ; 74: 92-103, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34920212

RESUMO

Collagen is the primary component of the extracellular matrix in humans. Traditionally commercial collagen is confined to bovine and porcine sources which have concerns of pathogenic transfer. Marine wastage accounts up to 85% by weight in the fishing industry. Extraction of collagen from these wastes for economic value and environmental sustainability is clear. Marine collagens have several advantages such as excellent biocompatibility, lower zoonotic risks, less immunological risk for patients allergic to mammalian products, and less religious restrictions. However, the properties of marine collagen-based constructs are highly dependent on the methods of fabrication. This article reviews advances in the design and fabrication of marine collagen-based constructs for medical applications. The potential applications of marine collagen in the regeneration of skin, bone and cartilage were also highlighted.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Animais , Materiais Biocompatíveis , Osso e Ossos , Bovinos , Colágeno , Matriz Extracelular , Humanos , Mamíferos , Suínos
6.
Int J Mol Sci ; 22(23)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34884821

RESUMO

Reconstruction of bone due to surgical removal or disease-related bony defects is a clinical challenge. It is known that the immune system exerts positive immunomodulatory effects on tissue repair and regeneration. In this study, we evaluated the in vivo efficacy of autologous neutrophils on bone regeneration using a rabbit calvarial defect model. Methods: Twelve rabbits, each with two surgically created calvarial bone defects (10 mm diameter), were randomly divided into two groups; (i) single application of neutrophils (SA-NP) vs. SA-NP control, and (ii) repetitive application of neutrophils (RA-NP) vs. RA-NP control. The animals were euthanized at 4 and 8 weeks post-operatively and the treatment outcomes were evaluated by micro-computed tomography, histology, and histomorphometric analyses. Results: The micro-CT analysis showed a significantly higher bone volume fraction (bone volume/total volume) in the neutrophil-treated groups, i.e., median interquartile range (IQR) SA-NP (18) and RA-NP (24), compared with the untreated controls, i.e., SA-NP (7) and RA-NP (14) at 4 weeks (p < 0.05). Similarly, new bone area fraction (bone area/total area) was significantly higher in neutrophil-treated groups at 4 weeks (p < 0.05). Both SA-NP and RA-NP had a considerably higher bone volume and bone area at 8 weeks, although the difference was not statistically significant. In addition, immunohistochemical analysis at 8 weeks revealed a higher expression of osteocalcin in both SA-NP and RA-NP groups. Conclusions: The present study provides first hand evidence that autologous neutrophils may have a positive effect on promoting new bone formation. Future studies should be performed with a larger sample size in non-human primate models. If proven feasible, this new promising strategy could bring clinical benefits for bone defects to the field of oral and maxillofacial surgery.


Assuntos
Regeneração Óssea , Neutrófilos/metabolismo , Crânio/fisiologia , Animais , Doenças Ósseas/terapia , Modelos Animais de Doenças , Masculino , Neutrófilos/transplante , Osteocalcina/metabolismo , Coelhos , Crânio/diagnóstico por imagem , Crânio/patologia , Microtomografia por Raio-X
7.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208563

RESUMO

Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoinductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = -1.2 pC/N were obtained at a powder dissolution temperature of 100 °C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.


Assuntos
Fosfatos de Cálcio , Materiais Revestidos Biocompatíveis , Campos Eletromagnéticos , Osteogênese , Poliésteres , Polivinil , Alicerces Teciduais , Regeneração Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Expressão Gênica , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteogênese/efeitos da radiação , Poliésteres/química , Poliésteres/farmacologia , Polivinil/química , Solventes , Engenharia Tecidual , Difração de Raios X
8.
Int J Mol Sci ; 22(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671550

RESUMO

INTRODUCTION: Resorbable synthetic scaffolds are promising for different indications, especially in the context of bone regeneration. However, they require additional biological components to enhance their osteogenic potential. In addition to different cell types, autologous blood-derived matrices offer many advantages to enhance the regenerative capacity of biomaterials. The present study aimed to analyze whether biologization of a PCL-mesh coated using differently centrifuged Platelet rich fibrin (PRF) matrices will have a positive influence on primary human osteoblasts activity in vitro. A polymeric resorbable scaffold (Osteomesh, OsteoporeTM (OP), Singapore) was combined with differently centrifuged PRF matrices to evaluate the additional influence of this biologization concept on bone regeneration in vitro. Peripheral blood of three healthy donors was used to gain PRF matrices centrifuged either at High (710× g, 8 min) or Low (44× g, 8 min) relative centrifugal force (RCF) according to the low speed centrifugation concept (LSCC). OP-PRF constructs were cultured with pOBs. POBs cultured on the uncoated OP served as a control. After three and seven days of cultivation, cell culture supernatants were collected to analyze the pOBs activity by determining the concentrations of VEGF, TGF-ß1, PDGF, OPG, IL-8, and ALP- activity. Immunofluorescence staining was used to evaluate the Osteopontin expression of pOBs. After three days, the group of OP+PRFLow+pOBs showed significantly higher expression of IL-8, TGF-ß1, PDGF, and VEGF compared to the group of OP+PRFHigh+pOBs and OP+pOBs. Similar results were observed on day 7. Moreover, OP+PRFLow+pOBs exhibited significantly higher activity of ALP compared to OP+PRFHigh+pOBs and OP+pOBs. Immunofluorescence staining showed a higher number of pOBs adherent to OP+PRFLow+pOBs compared to the groups OP+PRFHigh+pOBs and OP+pOBs. To the best of our knowledge, this study is the first to investigate the osteoblasts activity when cultured on a PRF-coated PCL-mesh in vitro. The presented results suggest that PRFLow centrifuged according to LSCC exhibits autologous blood cells and growth factors, seem to have a significant effect on osteogenesis. Thereby, the combination of OP with PRFLow showed promising results to support bone regeneration. Further in vivo studies are required to verify the results and carry out potential results for clinical translation.


Assuntos
Materiais Biocompatíveis , Osteoblastos/citologia , Fibrina Rica em Plaquetas , Alicerces Teciduais , Materiais Biocompatíveis/química , Adesão Celular , Células Cultivadas , Centrifugação , Meios de Cultura/química , Meios de Cultura/metabolismo , Citocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteoblastos/fisiologia , Regeneração , Alicerces Teciduais/química
9.
ACS Biomater Sci Eng ; 7(1): 207-221, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33455206

RESUMO

Most craniofacial bones are derived from the ectodermal germ layer via neural crest stem cells, which are distinct from mesoderm-derived long bones. However, current craniofacial bone tissue engineering approaches do not account for this difference and utilize mesoderm-derived bone marrow mesenchymal stem cells (BM-MSCs) as a paradigm cell source. The effect of the embryonic origin (ontogeny) of an MSC population on its osteogenic differentiation potential and regenerative ability still remains unresolved. To clarify the effects of MSC ontogeny on bone regenerative ability, we directly compared the craniofacial bone regenerative abilities of an ecto-mesenchymal stem cell (eMSC) population, which is derived from human embryonic stem cells via a neural crest intermediate, with mesodermal adult BM-MSCs. eMSCs showed comparable osteogenic and chondrogenic ability to BM-MSCs in 2-D in vitro culture, but lower adipogenic ability. They exhibited greater proliferation than BM-MSCs and comparable construct mineralization in a well-established 3-D polycaprolactone-tricalcium phosphate (PCL-TCP) scaffold system in vitro. eMSC-derived 3D osteogenic constructs were maintained for longer in a proliferative osteoblast state and exhibited differential levels of genes related to fibroblast growth factor (FGF) signaling compared to BM-MSCs. Although both eMSC and BM-MSC-seeded scaffold constructs could promote bone regeneration in a rat calvarial defect model, eMSC-derived osseous constructs had significantly higher cellularity due to increased number of proliferative (Ki67+) cells than those seeded with BM-MSCs, and exhibited enhanced new bone formation in the defect area as compared to untreated controls. Overall, our study demonstrates the potential of human eMSCs for future clinical use in craniofacial regeneration applications and indicates the importance of considering MSC origin when selecting an MSC source for regenerative applications.


Assuntos
Células-Tronco Mesenquimais , Adulto , Animais , Medula Óssea , Regeneração Óssea , Humanos , Crista Neural , Osteogênese , Ratos
10.
ACS Appl Bio Mater ; 4(9): 7044-7058, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006937

RESUMO

There is an urgent clinical need for wound dressings to treat skin injuries, particularly full-thickness wounds caused by acute and chronic wounds. Marine collagen has emerged as an attractive and safer alternative due to its biocompatibility, diversity, and sustainability. It has minimum risk of zoonotic diseases and less religious constraints as compared to mammalian collagen. In this study, we reported the development of a self-assembled nanofibrous barramundi (Lates calcarifer) collagen matrix (Nano-BCM), which showed good biocompatibility for full-thickness wound-healing applications. The collagen was extracted and purified from barramundi scales and skin. Thereafter, the physicochemical properties of collagen were systematically evaluated. The process to extract barramundi skin collagen (BC) gave an excellent 45% yield and superior purity (∼100%). More importantly, BC demonstrated structural integrity, native triple helix structure, and good thermal stability. BC demonstrated its efficacy in promoting human primary dermal fibroblast (HDF) and immortalized human keratinocytes (HaCaT) proliferation and migration. Nano-BCM has been prepared via self-assembly of collagen molecules in physiological conditions, which resembled the native extracellular matrix (ECM). The clinical therapeutic efficacy of the Nano-BCM was further evaluated in a full-thickness splinted skin wound mice model. In comparison to a clinically used wound dressing (DuoDerm), the Nano-BCM demonstrated significantly accelerated wound closure and re-epithelization. Moreover, Nano-BCM nanofibrous architecture and its ability to facilitate early inflammatory response significantly promoted angiogenesis and differentiated myofibroblast, leading to enhanced wound healing. Consequently, Nano-BCM demonstrates great potential as an economical and effective nonmammalian substitute to achieve skin regeneration.


Assuntos
Nanofibras , Animais , Colágeno/farmacologia , Matriz Extracelular , Mamíferos , Camundongos , Nanofibras/uso terapêutico , Pele , Cicatrização
11.
J Mech Behav Biomed Mater ; 112: 104078, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932158

RESUMO

To respond to the increasing need for bone repair strategies, various types of biomaterials have been developed. Among those, calcium phosphate (CaP) ceramics are promising since they possess a chemical composition similar to that of bones. To be suitable for implants, CaP ceramics need to fulfill a number of biological and mechanical requirements. Fatigue resistance and toughness are two key mechanical properties that are still challenging to obtain in CaP ceramics. This paper thus reviews and discusses current progress in the processing of CaP ceramics with bioinspired microstructures for load-bearing applications. First, methods to obtain CaP ceramics with bioinspired structure at individual lengthscales, namely nano-, micro-, and macroscale are discussed. Then, approaches to attain synergistic contribution of all lengthscales through complex and biomimetic hierarchical structures are reviewed. The processing methods and their design capabilities are presented and the mechanical properties of the materials they can produce are analyzed. Their limitations and challenges are finally discussed to suggest new directions for the fabrication of biomimetic bone implants with satisfactory properties. The paper could help biomedical researchers, materials scientists and engineers join forces to create the next generation of bone implants.


Assuntos
Substitutos Ósseos , Fosfatos de Cálcio , Materiais Biocompatíveis , Biomimética , Osso e Ossos , Cerâmica
12.
Mater Sci Eng C Mater Biol Appl ; 104: 109915, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31500060

RESUMO

An ultra-low percolation threshold electrically conductive polymer nanocomposite incorporating graphene into a polyhedral oligomeric silsesquioxane polycaprolactone (POSS-PCL/graphene) is described in this paper. Multilayer graphene flakes were homogeneously dispersed into POSS-PCL at 0.08, 0.4, 0.8, 1.6, and 4.0 wt% concentrations. The impedance spectroscopy of 0.08 wt% and higher concentration of graphene in POSS-PCL represented major improvement in conductivity over pristine POSS-PCL. The percolation threshold occurred at 0.08 wt% graphene concentration, and at 4.0 wt% the electrical conductivity exceeded 10-4 Scm-1. Furthermore, the chemical, morphological, and mechanical of the POSS-PCL/graphene with various graphene concentrations were investigated. Finally, neural cells cultured on all POSS-PCL/graphene constructs indicated higher metabolic activity and cell proliferation in comparison with pristine POSS-PCL. Herein, we demonstrate a method of developing a neural-compatible and electrically conductive polymer nanocomposite that could potentially function as a neural tissue engineered platform technology for neurological and neurosurgical applications.


Assuntos
Condutividade Elétrica , Grafite/química , Nanocompostos/química , Tecido Nervoso/fisiologia , Neurocirurgia , Poliésteres/química , Engenharia Tecidual/métodos , Animais , Proliferação de Células , Sobrevivência Celular , DNA/metabolismo , Compostos de Organossilício/química , Espectroscopia Fotoeletrônica , Ratos Wistar , Células de Schwann/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Propriedades de Superfície , Resistência à Tração
13.
J Tissue Eng Regen Med ; 13(10): 1779-1791, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31278852

RESUMO

Decellularized bovine and porcine tissues have been used as scaffolds to support tissue regeneration but inherit religious restrictions and risks of disease transmission to humans. Decellularized marine tissues are seen as attractive alternatives due to their similarity to mammalian tissues, reduced biological risks, and less religious restrictions. The aim of this study was to derive an acellular scaffold from the skin of tilapia and evaluate its suitability as a tissue engineering scaffold. Tilapia skin was treated with a series of chemical and enzymatic treatments to remove cellular materials. The decellularized tilapia skin (DTS) was then characterized and evaluated in vitro and in vivo to assess its biological compatibility. The results indicated that the decellularization process removed 99.6% of the DNA content from tilapia skin. The resultant DTS was shown to possess a high denaturation temperature of 68.1 ± 1.0°C and a high Young's modulus of 56.2 ± 14.4 MPa. The properties of DTS were also compared against those of crosslinked electrospun tilapia collagen membrane, another form of tilapia-derived collagen scaffold. In vitro studies revealed that both DTS and crosslinked electrospun tilapia collagen promoted cellular metabolic activity, differentiation, and mineralization of murine preosteogenic MC3T3-E1 cells. The rat calvarial defect model was used to evaluate the in vivo performance of the scaffolds, and both scaffolds did not induce hyperacute rejections. Furthermore, they enhanced bone regeneration in the critical defect compared with the sham control. This study suggests that tilapia-derived scaffolds have great potential in tissue engineering applications.


Assuntos
Pele/citologia , Tilápia/anatomia & histologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Linhagem Celular , Colágeno/metabolismo , DNA/metabolismo , Módulo de Elasticidade , Camundongos , Crânio/patologia , Resistência à Tração
14.
Tissue Eng Part A ; 25(13-14): 931-935, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31084409

RESUMO

IMPACT STATEMENT: Cells need a home to proliferate and remodel; biomimicry of the microarchitecture and microenvironment is important, and with 10 years of history in more than 20,000 clinical applications of 3D printed medical grade polycaprolactone scaffolds, we present the lessons learnt and project the future.


Assuntos
Regeneração Óssea/fisiologia , Poliésteres/química , Impressão Tridimensional , Alicerces Teciduais/química , Animais , Humanos , Neovascularização Fisiológica , Osteogênese
15.
Biofabrication ; 11(3): 035028, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30645987

RESUMO

We present a study on ternary nanocomposites consisting of medical grade poly(ε-caprolactone) (mPCL) matrix, hydroxyapatite nanopowder (nHA) and compatibilized magnesium fluoride nanoparticle (cMgF2) fillers. MgF2 nanoparticles were compatibilized by following a design approach based on the material interfaces of natural bone. MgF2-specific peptide-poly(ethylene glycol) conjugates were synthesized and used as surface modifiers for MgF2 nanoparticles similarly to the non-collagenous proteins (NPC) of bone which compatibilize hydroxyapatite nanocrystallites. Different compositions of mPCL/nHA/cMgF2 composites were blended together and processed into three dimensional (3D) scaffolds using solvent-free techniques including cryomilling and melt extrusion-based additive manufacturing. The use of two different inorganic fillers in mPCL resulted in nanocomposite materials with enhanced mechanical and biological properties. In particular, cMgF2 nanoparticles were found to be the primary constitent leading to the significant improvements in the mechanical properties of these composites. The scaffolds of the ternary nanocomposites provided the best in vitro performance in terms of osteogenic differentiation and stimulated mineralization. In summary, we demonstrated that the concept of bioinspired interface engineering facilitates the development of homogeneous ternary nanocomposites with increased processability in additive biomanufacturing. Additionally, the concept leads to scaffolds exhibiting enhanced mechanical and biological properties. Overall, these multicomponent nano-interfaced building blocks add a new group of advanced functional materials with tunable mechanical properties, degradation and bioactivity.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanocompostos/química , Peptídeos/química , Polímeros/química , Impressão Tridimensional , Materiais Biomiméticos/química , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Durapatita/química , Fluoretos/química , Humanos , Compostos de Magnésio/química , Células-Tronco Mesenquimais/citologia , Nanocompostos/ultraestrutura , Poliésteres/química , Alicerces Teciduais/química , Microtomografia por Raio-X
16.
Tissue Eng Part C Methods ; 25(2): 114-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661463

RESUMO

IMPACT STATEMENT: We present the study about how the parameters of pulsed electromagnetic field (PEMF) stimulus affected calvarial osteoblast precursor cell in terms of growth, viability, and differentiation. This research provides insight and foundation to clinical application of noninvasive therapy using PEMF to improve bone regeneration.


Assuntos
Regeneração Óssea/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Campos Eletromagnéticos , Osteoblastos/citologia , Osteogênese/efeitos da radiação , Crânio/citologia , Animais , Células Cultivadas , Camundongos , Osteoblastos/fisiologia , Osteoblastos/efeitos da radiação , Crânio/fisiologia , Crânio/efeitos da radiação
17.
J Craniomaxillofac Surg ; 47(2): 341-348, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30579746

RESUMO

BACKGROUND: Cranioplasty is a surgical procedure used to treat a bone defect or deformity in the skull. To date, there is little consensus on the standard-of-care for graft materials used in such a procedure. Graft materials must have sufficient mechanical strength to protect the underlying brain as well as the ability to integrate and support new bone growth. Also, the ideal graft material should be individually customized to the contours of the defect to ensure a suitable aesthetic outcome for the patient. PURPOSE: Customized 3D-printed scaffolds comprising of polycaprolactone-ß-tricalcium phosphate (PCL-TCP) have been developed with mechanical properties suitable for cranioplasty. Osteostimulation of PCL-TCP was enhanced through the addition of a bone matrix-mimicking heparan sulphate glycosaminoglycan (HS3) with increased affinity for bone morphogenetic protein-2 (BMP-2). Efficacy of this PCL-TCP/HS3 combination device was assessed in a rat critical-sized calvarial defect model. METHOD: Critical-sized defects (5 mm) were created in both parietal bones of 19 Sprague Dawley rats (Male, 450-550 g). Each cranial defect was randomly assigned to 1 of 4 treatment groups: (1) A control group consisting of PCL-TCP/Fibrin alone (n = 5); (2) PCL-TCP/Fibrin-HSft (30 µg) (n = 6) (HSft is the flow-through during HS3 isolation that has reduced affinity for BMP-2); (3) PCL-TCP/Fibrin-HS3 (5 µg) (n = 6); (4) PCL-TCP/Fibrin-HS3 (30 µg) (n = 6). Scaffold integration and bone formation was evaluated 12-weeks post implantation by µCT and histology. RESULTS: Treatment with PCL-TCP/Fibrin alone (control) resulted in 23.7% ± 1.55% (BV/TV) of the calvarial defect being filled with new bone, a result similar to treatment with PCL-TCP/Fibrin scaffolds containing either HSft or HS3 (5 µg). At increased amounts of HS3 (30 µg), enhanced bone formation was evident (BV/TV = 38.6% ± 9.38%), a result 1.6-fold higher than control. Further assessment by 2D µCT and histology confirmed the presence of enhanced bone formation and scaffold integration with surrounding host bone only when scaffolds contained sufficient bone matrix-mimicking HS3. CONCLUSION: Enhancing the biomimicry of devices using a heparan sulphate with increased affinity to BMP-2 can serve to improve the performance of PCL-TCP scaffolds and provides a suitable treatment for cranioplasty.


Assuntos
Materiais Biomiméticos/uso terapêutico , Fosfatos de Cálcio/uso terapêutico , Heparitina Sulfato/uso terapêutico , Poliésteres/uso terapêutico , Crânio/cirurgia , Alicerces Teciduais , Animais , Materiais Biomiméticos/administração & dosagem , Fosfatos de Cálcio/administração & dosagem , Heparitina Sulfato/administração & dosagem , Humanos , Imageamento Tridimensional , Masculino , Poliésteres/administração & dosagem , Ratos , Ratos Sprague-Dawley , Crânio/diagnóstico por imagem
18.
Life Sci ; 207: 272-283, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29920249

RESUMO

AIM: To investigate the effect of intracavernous injection of human umbilical cord blood derived endothelial colony forming cells (HUCB ECFCs) on erectile dysfunction (ED) in Zucker Diabetic Fatty (ZDF) rat model. METHODS: Erectile function was assessed by cavernous nerve electrostimulation in ZDF rats aged 20-28 weeks. Following confirmation of severe ED at the age of 28 weeks, 21 ZDF rats were randomly assigned to three experimental groups: 1 million ECFCs, 2 million ECFCs, and phosphate buffered saline (PBS). Four weeks after intracavernous injection, the efficacy of ECFCs was quantified by intracavernous pressure (ICP) measurement, Masson's trichrome staining, immunohistologic and immunoblot analyses and TUNEL assay. KEY FINDINGS: Intracavernous ECFC administration improved ICP in a dose-dependent manner in comparison to the age-matched PBS group. Functional improvement in ICP was accompanied by a significant restoration of the cavernosal endothelial and smooth muscle cell content and cavernosal nerve function. The percentage eNOS and nNOS positive cavernosal cells, and their respective protein expression levels and nNOS positive cells in the dorsal penile nerve in 2 million ECFCs treated groups were significantly higher than the PBS group. TUNEL stain quantification showed a significant decrease in cavernosal apoptosis following ECFC treatment. SIGNIFICANCE: The results are expected to provide a scientific basis to further study the clinical application of HUCB ECFCs in ameliorating ED in human. CONCLUSIONS: HUCB ECFCs significantly improved severe ED in ZDF rats through improvement of the nerve and endothelium function and restoration of smooth muscle in the cavernosum by overcoming the cavernosal apoptosis.


Assuntos
Transplante de Células/métodos , Células Endoteliais/citologia , Disfunção Erétil/terapia , Sangue Fetal/citologia , Obesidade/complicações , Animais , Apoptose , Diabetes Mellitus Experimental/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Músculo Liso/fisiopatologia , Ereção Peniana , Pênis/fisiopatologia , Ratos , Ratos Zucker , Regeneração
19.
J Tissue Eng Regen Med ; 12(4): e2039-e2050, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314764

RESUMO

Cells respond to physiological mechanical stresses especially during early fetal development. Adopting a biomimetic approach, it is necessary to develop bioreactor systems to explore the effects of physiologically relevant mechanical strains and shear stresses for functional tissue growth and development. This study introduces a multimodal bioreactor system that allows application of cyclic compressive strains on premature bone grafts that are cultured under biaxial rotation (chamber rotation about 2 axes) conditions for bone tissue engineering. The bioreactor is integrated with sensors for dissolved oxygen levels and pH that allow real-time, non-invasive monitoring of the culture parameters. Mesenchymal stem cells-seeded polycaprolactone-ß-tricalcium phosphate scaffolds were cultured in this bioreactor over 2 weeks in 4 different modes-static, cyclic compression, biaxial rotation, and multimodal (combination of cyclic compression and biaxial rotation). The multimodal culture resulted in 1.8-fold higher cellular proliferation in comparison with the static controls within the first week. Two weeks of culture in the multimodal bioreactor utilizing the combined effects of optimal fluid flow conditions and cyclic compression led to the upregulation of osteogenic genes alkaline phosphatase (3.2-fold), osteonectin (2.4-fold), osteocalcin (10-fold), and collagen type 1 α1 (2-fold) in comparison with static cultures. We report for the first time, the independent and combined effects of mechanical stimulation and biaxial rotation for bone tissue engineering using a bioreactor platform with non-invasive sensing modalities. The demonstrated results show leaning towards the futuristic vision of using a physiologically relevant bioreactor system for generation of autologous bone grafts for clinical implantation.


Assuntos
Biomimética , Reatores Biológicos , Osso e Ossos/metabolismo , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química , Antígenos de Diferenciação/biossíntese , Osso e Ossos/citologia , Fosfatos de Cálcio/química , Técnicas de Cultura de Células , Feto , Células-Tronco Mesenquimais/citologia , Poliésteres/química , Rotação , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
20.
J Mater Chem B ; 6(22): 3612-3631, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32254825

RESUMO

Laser techniques have been traditionally used for material processing. Currently, there is growing recognition that lasers are a reliable fabrication tool that can be used to tailor the surfaces of biomaterials for tissue-engineering applications. Herein, we review the use of selected lasers with a wide range of wavelengths and pulses. We present typical examples to illustrate the basic fabrication principles and significance of laser fabrication in tailoring biomaterial surfaces with different geometric features. We also discuss the tissue-engineering applications of laser-fabricated biomaterials; these biomaterial surfaces show promise in delivering physicochemical cues for hard and soft tissue reconstruction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...