Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 17(9): 926-940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28872900

RESUMO

During three low-altitude (99, 66, 66 km) flybys through the Enceladus plume in 2010 and 2011, Cassini's ion neutral mass spectrometer (INMS) made its first high spatial resolution measurements of the plume's gas density and distribution, detecting in situ the individual gas jets within the broad plume. Since those flybys, more detailed Imaging Science Subsystem (ISS) imaging observations of the plume's icy component have been reported, which constrain the locations and orientations of the numerous gas/grain jets. In the present study, we used these ISS imaging results, together with ultraviolet imaging spectrograph stellar and solar occultation measurements and modeling of the three-dimensional structure of the vapor cloud, to constrain the magnitudes, velocities, and time variability of the plume gas sources from the INMS data. Our results confirm a mixture of both low and high Mach gas emission from Enceladus' surface tiger stripes, with gas accelerated as fast as Mach 10 before escaping the surface. The vapor source fluxes and jet intensities/densities vary dramatically and stochastically, up to a factor 10, both spatially along the tiger stripes and over time between flyby observations. This complex spatial variability and dynamics may result from time-variable tidal stress fields interacting with subsurface fissure geometry and tortuosity beyond detectability, including changing gas pathways to the surface, and fluid flow and boiling in response evolving lithostatic stress conditions. The total plume gas source has 30% uncertainty depending on the contributions assumed for adiabatic and nonadiabatic gas expansion/acceleration to the high Mach emission. The overall vapor plume source rate exhibits stochastic time variability up to a factor ∼5 between observations, reflecting that found in the individual gas sources/jets. Key Words: Cassini at Saturn-Geysers-Enceladus-Gas dynamics-Icy satellites. Astrobiology 17, 926-940.

2.
Science ; 356(6334): 155-159, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28408597

RESUMO

Saturn's moon Enceladus has an ice-covered ocean; a plume of material erupts from cracks in the ice. The plume contains chemical signatures of water-rock interaction between the ocean and a rocky core. We used the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft to detect molecular hydrogen in the plume. By using the instrument's open-source mode, background processes of hydrogen production in the instrument were minimized and quantified, enabling the identification of a statistically significant signal of hydrogen native to Enceladus. We find that the most plausible source of this hydrogen is ongoing hydrothermal reactions of rock containing reduced minerals and organic materials. The relatively high hydrogen abundance in the plume signals thermodynamic disequilibrium that favors the formation of methane from CO2 in Enceladus' ocean.

3.
J Chem Phys ; 124(10): 104702, 2006 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-16542092

RESUMO

We present laboratory studies of the radiolysis of pure (97%) solid H2O2 films by 50 keV H+ at 17 K. Using UV-visible and infrared reflectance spectroscopies, a quartz-crystal microbalance, and a mass spectrometer, we measured the absolute concentrations of the H2O, O2, H2O2, and O3 products as a function of irradiation fluence. Ozone was identified by both UV and infrared spectroscopies and O2 from its forbidden transition in the infrared at 1550 cm(-1). From the measurements we derive radiation yields, which we find to be particularly high for the decomposition of hydrogen peroxide; this can be explained by the occurrence of a chemical chain reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...