Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 22(6): 1959-1968, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37146082

RESUMO

Post-translational modifications (PTMs) alter the function and fate of proteins and cells in almost every conceivable way. Protein modifications can occur as a result of specific regulating actions of enzymes, such as tyrosine kinases phosphorylating tyrosine residues or by nonenzymatic reactions, such as oxidation related to oxidative stress and diseases. While many studies have addressed the multisite, dynamic, and network-like properties of PTMs, only little is known of the interplay of the same site modifications. In this work, we studied the enzymatic phosphorylation of oxidized tyrosine (l-DOPA) residues using synthetic insulin receptor peptides, in which tyrosine residues were replaced with l-DOPA. The phosphorylated peptides were identified by liquid chromatography-high-resolution mass spectrometry and the site of phosphorylation by tandem mass spectrometry. The results clearly show that the oxidized tyrosine residues are phosphorylated, displaying a specific immonium ion peak in the MS2 spectra. Furthermore, we detected this modification in our reanalysis (MassIVE ID: MSV000090106) of published bottom-up phosphoproteomics data. The modification, where both oxidation and phosphorylation take place at the same amino acid, has not yet been published in PTM databases. Our data indicate that there can be multiple PTMs that do not exclude each other at the same modification site.


Assuntos
Levodopa , Tirosina , Fosforilação , Tirosina/metabolismo , Levodopa/metabolismo , Peptídeos/química , Espectrometria de Massas em Tandem/métodos , Processamento de Proteína Pós-Traducional
2.
Front Cell Neurosci ; 16: 900725, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783104

RESUMO

Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF's function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.

3.
Cancers (Basel) ; 14(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35805031

RESUMO

(1) Background: Extracellular vesicles (EVs) have emerged as crucial players in the communication between cells in both physiological and pathological scenarios. The functions of EVs are strongly determined by their molecular content, which includes all bioactive molecules, such as proteins, lipids, RNA, and, as more recently described, double-stranded DNA. It has been shown that in oncological settings DNA associated with EVs (EV-DNA) is representative of the genome of parental cells and that it reflects the mutational status of the tumor, gaining much attention as a promising source of biomarker mutant DNA. However, one of the challenges in studies of EV-DNA is the lack of standardization of protocols for the DNA extraction from EVs, as well as ways to assess quality control, which hinders its future implementation in clinics. (2) Methods: We performed a comprehensive comparison of commonly used approaches for EV-DNA extraction by assessing DNA quantity, quality, and suitability for downstream analyses. (3) Results: We here established strategic points to consider for EV-DNA preparation for mutational analyses, including qPCR and NGS. (4) Conclusions: We put in place a workflow that can be applied for the detection of clinically relevant mutations in the EV-DNA of cancer patients.

4.
Transl Neurodegener ; 11(1): 22, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418104

RESUMO

BACKGROUND: Transcriptomic and proteomic profiling of human brain tissue is hindered by the availability of fresh samples from living patients. Postmortem samples usually represent the advanced disease stage of the patient. Furthermore, the postmortem interval can affect the transcriptomic and proteomic profiles. Therefore, fresh brain tissue samples from living patients represent a valuable resource of metabolically intact tissue. Implantation of deep brain stimulation (DBS) electrodes into the human brain is a neurosurgical treatment for, e.g., movement disorders. Here, we describe an improved approach to collecting brain tissues from surgical instruments used in implantation of DBS device for transcriptomics and proteomics analyses. METHODS: Samples were extracted from guide tubes and recording electrodes used in routine DBS implantation procedure to treat patients with Parkinson's disease, genetic dystonia and tremor. RNA sequencing was performed in tissues extracted from the recording microelectrodes and liquid chromatography-mass spectrometry (LC-MS) performed in tissues from guide tubes. To assess the performance of the current approach, the obtained datasets were compared with previously published datasets representing brain tissues. RESULTS: Altogether, 32,034 RNA transcripts representing the unique Ensembl gene identifiers were detected from eight samples representing both hemispheres of four patients. By using  LC-MS, we identified 734 unique proteins from 31 samples collected from 14 patients. The datasets are available in the BioStudies database (accession number S-BSST667). Our results indicate that surgical instruments used in DBS installation retain brain material sufficient for protein and gene expression studies. Comparison with previously published datasets obtained with similar approach proved the robustness and reproducibility of the protocol. CONCLUSIONS: The instruments used during routine DBS surgery are a useful source for obtaining fresh brain tissues from living patients. This approach overcomes the issues that arise from using postmortem tissues, such as the effect of postmortem interval on transcriptomic and proteomic landscape of the brain, and can be used for studying molecular aspects of DBS-treatable diseases.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Encéfalo/cirurgia , Estimulação Encefálica Profunda/métodos , Humanos , Microeletrodos , Doença de Parkinson/genética , Doença de Parkinson/cirurgia , Proteômica , Reprodutibilidade dos Testes
5.
iScience ; 24(7): 102712, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235411

RESUMO

Skeletal muscle insulin resistance is a central defect in the pathogenesis of type 2 diabetes (T2D). Here, we analyzed skeletal muscle proteome in 148 vastus lateralis muscle biopsies obtained from men covering all glucose tolerance phenotypes: normal, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and T2D. Skeletal muscle proteome was analyzed by a sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics technique. Our data indicate a downregulation in several proteins involved in mitochondrial electron transport or respiratory chain complex assembly already in IFG and IGT muscles, with most profound decreases observed in T2D. Additional phosphoproteomic analysis reveals altered phosphorylation in several signaling pathways in IFG, IGT, and T2D muscles, including those regulating glucose metabolic processes, and the structure of muscle cells. These data reveal several alterations present in skeletal muscle already in prediabetes and highlight impaired mitochondrial energy metabolism in the trajectory from prediabetes into T2D.

6.
Exp Neurol ; 329: 113288, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229226

RESUMO

The peri-infarct region after ischemic stroke is the anatomical location for many of the endogenous recovery processes; however, -the molecular events in the peri-infarct region remain poorly characterized. In this study, we examine the molecular profile of the peri-infarct region on post-stroke day four, a time when reparative processes are ongoing. We used a multiomics approach, involving RNA sequencing, and mass spectrometry-based proteomics and metabolomics to characterize molecular changes in the peri-infarct region. We also took advantage of our previously developed method to express transgenes in the peri-infarct region where self-complementary adeno-associated virus (AAV) vectors were injected into the brain parenchyma on post-stroke day 2. We have previously used this method to show that mesencephalic astrocyte-derived neurotrophic factor (MANF) enhances functional recovery from stroke and recruits phagocytic cells to the peri-infarct region. Here, we first analyzed the effects of stroke to the peri-infarct region on post-stroke day 4 in comparison to sham-operated animals, finding that strokeinduced changes in 3345 transcripts, 341 proteins, and 88 metabolites. We found that after stroke, genes related to inflammation, proliferation, apoptosis, and regeneration were upregulated, whereas genes encoding neuroactive ligand receptors and calcium-binding proteins were downregulated. In proteomics, we detected upregulation of proteins related to protein synthesis and downregulation of neuronal proteins. Metabolomic studies indicated that in after stroke tissue there is an increase in saccharides, sugar phosphates, ceramides and free fatty acids and a decrease of adenine, hypoxantine, adenosine and guanosine. We then compared the effects of post-stroke delivery of AAV1-MANF to AAV1-eGFP (enhanced green fluorescent protein). MANF administration increased the expression of 77 genes, most of which were related to immune response. In proteomics, MANF administration reduced S100A8 and S100A9 protein levels. In metabolomics, no significant differences between MANF and eGFP treatment were detected, but relative to sham surgery group, most of the changes in lipids were significant in the AAV-eGFP group only. This work describes the molecular profile of the peri-infarct region during recovery from ischemic stroke, and establishes a resource for further stroke studies. These results provide further support for parenchymal MANF as a modulator of phagocytic function.


Assuntos
Infarto Cerebral/genética , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteômica/métodos , Acidente Vascular Cerebral/genética , Transcriptoma/genética , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto Cerebral/metabolismo , Infarto Cerebral/patologia , Técnicas de Transferência de Genes , Masculino , Metabolômica/métodos , Fatores de Crescimento Neural/administração & dosagem , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fatores de Tempo
7.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538116

RESUMO

The tumor microenvironment is fundamental to cancer progression, and the influence of its mechanical properties is increasingly being appreciated. Tamoxifen has been used for many years to treat estrogen-positive breast cancer. Here we report that tamoxifen regulates the level and activity of collagen cross-linking and degradative enzymes, and hence the organization of the extracellular matrix, via a mechanism involving both the G protein-coupled estrogen receptor (GPER) and hypoxia-inducible factor-1 alpha (HIF-1A). We show that tamoxifen reduces HIF-1A levels by suppressing myosin-dependent contractility and matrix stiffness mechanosensing. Tamoxifen also downregulates hypoxia-regulated genes and increases vascularization in PDAC tissues. Our findings implicate the GPER/HIF-1A axis as a master regulator of peri-tumoral stromal remodeling and the fibrovascular tumor microenvironment and offer a paradigm shift for tamoxifen from a well-established drug in breast cancer hormonal therapy to an alternative candidate for stromal targeting strategies in PDAC and possibly other cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Tamoxifeno/administração & dosagem , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Miosinas/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
8.
J Am Heart Assoc ; 7(20): e010378, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30371266

RESUMO

Background The molecular mechanisms mediating postnatal loss of cardiac regeneration in mammals are not fully understood. We aimed to provide an integrated resource of mRNA , protein, and metabolite changes in the neonatal heart for identification of metabolism-related mechanisms associated with cardiac regeneration. Methods and Results Mouse ventricular tissue samples taken on postnatal day 1 (P01), P04, P09, and P23 were analyzed with RNA sequencing and global proteomics and metabolomics. Gene ontology analysis, KEGG pathway analysis, and fuzzy c-means clustering were used to identify up- or downregulated biological processes and metabolic pathways on all 3 levels, and Ingenuity pathway analysis (Qiagen) was used to identify upstream regulators. Differential expression was observed for 8547 mRNA s and for 1199 of 2285 quantified proteins. Furthermore, 151 metabolites with significant changes were identified. Differentially regulated metabolic pathways include branched chain amino acid degradation (upregulated at P23), fatty acid metabolism (upregulated at P04 and P09; downregulated at P23) as well as the HMGCS ( HMG -CoA [hydroxymethylglutaryl-coenzyme A] synthase)-mediated mevalonate pathway and ketogenesis (transiently activated). Pharmacological inhibition of HMGCS in primary neonatal cardiomyocytes reduced the percentage of BrdU-positive cardiomyocytes, providing evidence that the mevalonate and ketogenesis routes may participate in regulating the cardiomyocyte cell cycle. Conclusions This study is the first systems-level resource combining data from genomewide transcriptomics with global quantitative proteomics and untargeted metabolomics analyses in the mouse heart throughout the early postnatal period. These integrated data of molecular changes associated with the loss of cardiac regeneration may open up new possibilities for the development of regenerative therapies.


Assuntos
Coração/crescimento & desenvolvimento , Camundongos/crescimento & desenvolvimento , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Expressão Gênica/fisiologia , Coração/embriologia , Ventrículos do Coração , Corpos Cetônicos/biossíntese , Metabolômica , Ácido Mevalônico/metabolismo , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/fisiologia , Transcriptoma/fisiologia
9.
Anal Chem ; 87(6): 3280-5, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25715054

RESUMO

A new ambient mass spectrometry method, solvent jet desorption capillary photoionization (DCPI), is described. The method uses a solvent jet generated by a coaxial nebulizer operated at ambient conditions with nitrogen as nebulizer gas. The solvent jet is directed onto a sample surface, from which analytes are extracted into the solvent and ejected from the surface in secondary droplets formed in collisions between the jet and the sample surface. The secondary droplets are directed into the heated capillary photoionization (CPI) device, where the droplets are vaporized and the gaseous analytes are ionized by 10 eV photons generated by a vacuum ultraviolet (VUV) krypton discharge lamp. As the CPI device is directly connected to the extended capillary inlet of the MS, high ion transfer efficiency to the vacuum of MS is achieved. The solvent jet DCPI provides several advantages: high sensitivity for nonpolar and polar compounds with limit of detection down to low fmol levels, capability of analyzing small and large molecules, and good spatial resolution (250 µm). Two ionization mechanisms are involved in DCPI: atmospheric pressure photoionization, capable of ionizing polar and nonpolar compounds, and solvent assisted inlet ionization capable of ionizing larger molecules like peptides. The feasibility of DCPI was successfully tested in the analysis of polar and nonpolar compounds in sage leaves and chili pepper.


Assuntos
Espectrometria de Massas/métodos , Solventes/química , Capsicum/química , Estudos de Viabilidade , Espectrometria de Massas/instrumentação , Nebulizadores e Vaporizadores , Salvia officinalis/química , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...