Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cancer Gene Ther ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467764

RESUMO

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy has advanced rapidly in the clinic. We recently reported that tumor stroma-derived angiopoietin-like protein 2 (ANGPTL2) has tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses. However, a direct impact of ANGPTL2 on ICI anti-tumor effect remains unclear. Here, we use a murine syngeneic model to show that host ANGPTL2 facilitates CD8+ T cell cross-priming and contributes to anti-tumor responses to ICIs in this context. Importantly, our analysis of public datasets indicated that ANGPTL2 expression is associated with positive responses to ICI therapy by human melanoma patients. We conclude that ANGPTL2-mediated stromal cell crosstalk facilitates anti-tumor immunity and ICI responsiveness. These findings overall provide novel insight into ANGPTL2 anti-tumor function and regulation of ICI-induced anti-tumor immunity.

2.
J Cell Physiol ; 239(2): e31174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38108578

RESUMO

The Dja2 knockout (Dja2-/- ) mice had respiratory distress, and >60% died within 2 days after birth. The surviving adult Dja2-/- mice were infertile and the lungs of Dja2-/- mice showed several abnormalities, including the processing defect of prosurfactant protein C in the alveolar epithelial type II cells and the accumulation of glycolipids in enlarged alveolar macrophages. The luminal pH of acidic organelles in Dja2-/- cells was shifted to pH 5.37-5.45. This deviated pH was immediately restored to control levels (pH 4.56-4.65) by the addition of a diuretic, ethyl isopropyl amiloride (EIPA). Although the role of DJA2 in maintaining the pH homeostasis of lysosome-related organelles is currently obscure, this rapid and remarkable pH resilience is best explained by an EIPA-sensitive proton efflux machinery that is disorganized and overactivated due to the loss of Dja2.


Assuntos
Lisossomos , Prótons , Animais , Camundongos , Transporte Biológico , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Macrófagos Alveolares , Camundongos Endogâmicos C57BL
3.
Commun Biol ; 6(1): 965, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37736764

RESUMO

Use of immune checkpoint inhibitors (ICIs) as cancer immunotherapy advances rapidly in the clinic. Despite their therapeutic benefits, ICIs can cause clinically significant immune-related adverse events (irAEs), including myocarditis. However, the cellular and molecular mechanisms regulating irAE remain unclear. Here, we investigate the function of Angiopoietin-like protein 2 (ANGPTL2), a potential inflammatory mediator, in a mouse model of ICI-related autoimmune myocarditis. ANGPTL2 deficiency attenuates autoimmune inflammation in these mice, an outcome associated with decreased numbers of T cells and macrophages. We also show that cardiac fibroblasts express abundant ANGPTL2. Importantly, cardiac myofibroblast-derived ANGPTL2 enhances expression of chemoattractants via the NF-κB pathway, accelerating T cell recruitment into heart tissues. Our findings suggest an immunostimulatory function for ANGPTL2 in the context of ICI-related autoimmune inflammation and highlight the pathophysiological significance of ANGPTL2-mediated cardiac myofibroblast/immune cell crosstalk in enhancing autoimmune responses. These findings overall provide insight into mechanisms regulating irAEs.


Assuntos
Proteína 2 Semelhante a Angiopoietina , Inibidores de Checkpoint Imunológico , Miocardite , Animais , Camundongos , Coração , Inibidores de Checkpoint Imunológico/efeitos adversos , Inflamação , Miocardite/induzido quimicamente
4.
Oncogene ; 40(1): 55-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051596

RESUMO

Previous studies show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) functions as a tumor promoter in some cancer contexts. However, we recently reported that host ANGPTL2 also shows tumor suppressive activity by enhancing dendritic cell-mediated CD8+ T cell anti-tumor immune responses in mouse kidney cancer and murine syngeneic models. However, mechanisms underlying ANGPTL2-mediated tumor suppression are complex and not well known. Here, we investigated ANGPTL2 tumor suppressive function in chemically-induced intestinal tumorigenesis. ANGPTL2 deficiency enhanced intestinal tumor growth in an experimental mouse colitis-associated colon cancer (CAC) model. Angptl2-deficient mice also showed a decrease not only in CD8+ T cell responses but in CD4+ T cell responses during intestinal tumorigenesis. Furthermore, we show that stroma-derived ANGPTL2 can activate the myeloid immune response. Notably, ANGPTL2 drove generation of immunostimulatory macrophages via the NF-κB pathway, accelerating CD4+ T helper 1 (Th1) cell activation. These findings overall provide novel insight into the complex mechanisms underlying ANGPTL2 anti-tumor function in cancer pathology.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Azoximetano/efeitos adversos , Colite/induzido quimicamente , Sulfato de Dextrana/efeitos adversos , Neoplasias Intestinais/patologia , Proteína 2 Semelhante a Angiopoietina , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Colite/complicações , Colite/genética , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais , Microambiente Tumoral
5.
Genes Dev ; 33(23-24): 1641-1656, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727773

RESUMO

Angiopoietin-like protein 2 (ANGPTL2) is a secreted glycoprotein homologous to angiopoietins. Previous studies suggest that tumor cell-derived ANGPTL2 has tumor-promoting function. Here, we conducted mechanistic analysis comparing ANGPTL2 function in cancer progression in a murine syngeneic model of melanoma and a mouse model of translocation renal cell carcinoma (tRCC). ANGPTL2 deficiency in tumor cells slowed tRCC progression, supporting a tumor-promoting role. However, systemic ablation of ANGPTL2 accelerated tRCC progression, supporting a tumor-suppressing role. The syngeneic model also demonstrated a tumor-suppressing role of ANGPTL2 in host tumor microenvironmental cells. Furthermore, the syngeneic model showed that PDGFRα+ fibroblasts in the tumor microenvironment express abundant ANGPTL2 and contribute to tumor suppression. Moreover, host ANGPTL2 facilitates CD8+ T-cell cross-priming and enhances anti-tumor immune responses. Importantly, ANGPTL2 activates dendritic cells through PIR-B-NOTCH signaling and enhances tumor vaccine efficacy. Our study provides strong evidence that ANGPTL2 can function in either tumor promotion or suppression, depending on what cell type it is expressed in.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Linfócitos T CD8-Positivos/imunologia , Carcinoma de Células Renais/fisiopatologia , Progressão da Doença , Melanoma/fisiopatologia , Transdução de Sinais , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/deficiência , Proteínas Semelhantes a Angiopoietina/imunologia , Animais , Vacinas Anticâncer/imunologia , Carcinoma de Células Renais/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Melanoma/imunologia , Camundongos , Transdução de Sinais/genética , Células Estromais/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
6.
PLoS One ; 14(8): e0221366, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31442231

RESUMO

Sarcopenia due to loss of skeletal muscle mass and strength leads to physical inactivity and decreased quality of life. The number of individuals with sarcopenia is rapidly increasing as the number of older people increases worldwide, making this condition a medical and social problem. Some patients with sarcopenia exhibit accumulation of peri-muscular adipose tissue (PMAT) as ectopic fat deposition surrounding atrophied muscle. However, an association of PMAT with muscle atrophy has not been demonstrated. Here, we show that PMAT is associated with muscle atrophy in aged mice and that atrophy severity increases in parallel with cumulative doses of PMAT. We observed severe muscle atrophy in two different obese model mice harboring significant PMAT relative to respective control non-obese mice. We also report that denervation-induced muscle atrophy was accelerated in non-obese young mice transplanted around skeletal muscle with obese adipose tissue relative to controls transplanted with non-obese adipose tissue. Notably, transplantation of obese adipose tissue into peri-muscular regions increased nuclear translocation of FoxO transcription factors and upregulated expression FoxO targets associated with proteolysis (Atrogin1 and MuRF1) and cellular senescence (p19 and p21) in muscle. Conversely, in obese mice, PMAT removal attenuated denervation-induced muscle atrophy and suppressed upregulation of genes related to proteolysis and cellular senescence in muscle. We conclude that PMAT accumulation accelerates age- and obesity-induced muscle atrophy by increasing proteolysis and cellular senescence in muscle.


Assuntos
Tecido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Obesidade/genética , Sarcopenia/genética , Tecido Adiposo/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Senescência Celular/genética , Modelos Animais de Doenças , Proteína Forkhead Box O1/genética , Humanos , Camundongos , Camundongos Obesos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Obesidade/metabolismo , Obesidade/patologia , Qualidade de Vida , Proteínas Ligases SKP Culina F-Box/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
7.
Cancer Sci ; 110(6): 1897-1908, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31006167

RESUMO

Xp11.2 translocation renal cell carcinoma (Xp11 tRCC) is a rare sporadic pediatric kidney cancer caused by constitutively active TFE3 fusion proteins. Tumors in patients with Xp11 tRCC tend to recur and undergo frequent metastasis, in part due to lack of methods available to detect early-stage disease. Here we generated transgenic (Tg) mice overexpressing the human PRCC-TFE3 fusion gene in renal tubular epithelial cells, as an Xp11 tRCC mouse model. At 20 weeks of age, mice showed no histological abnormalities in kidney but by 40 weeks showed Xp11 tRCC development and related morphological and histological changes. MicroRNA (miR)-204-5p levels in urinary exosomes of 40-week-old Tg mice showing tRCC were significantly elevated compared with levels in control mice. MicroRNA-204-5p expression also significantly increased in primary renal cell carcinoma cell lines established both from Tg mouse tumors and from tumor tissue from 2 Xp11 tRCC patients. All of these lines secreted miR-204-5p-containing exosomes. Notably, we also observed increased miR-204-5p levels in urinary exosomes in 20-week-old renal PRCC-TFE3 Tg mice prior to tRCC development, and those levels were equivalent to those in 40-week-old Tg mice, suggesting that miR-204-5p increases follow expression of constitutively active TFE3 fusion proteins in renal tubular epithelial cells prior to overt tRCC development. Finally, we confirmed that miR-204-5p expression significantly increases in noncancerous human kidney cells after overexpression of a PRCC-TFE3 fusion gene. These findings suggest that miR-204-5p in urinary exosomes could be a useful biomarker for early diagnosis of patients with Xp11 tRCC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Cromossomos Humanos X/genética , Neoplasias Renais/genética , MicroRNAs/genética , Translocação Genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Biomarcadores Tumorais/urina , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/urina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exossomos/genética , Humanos , Rim/anormalidades , Rim/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/urina , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/urina , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo
8.
J Clin Endocrinol Metab ; 104(1): 172-180, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137449

RESUMO

Context: Angiopoietin-like protein 2 (ANGPTL2) is a circulating, proinflammatory protein. Objective: To examine the role of ANGPTL2 in the pathogenesis of diabetic kidney disease (DKD), we studied the epigenetic regulation of angptl2 expression in patients with diabetes. Design, Setting, Participants, and Intervention: We determined the relationship between serum ANGPTL2 levels and the progression of DKD in cross-sectional (220 patients) and cohort (145 patients, 7-year follow-up) studies. Furthermore, we investigated the direct effect of ANGPTL2 on podocyte function. Main Outcomes: The main outcome was progression of DKD. Results: We found that the expression of angptl2 was decreased by the methylation of its promoter region. Multivariate logistic regression analyses revealed that the baseline level of serum ANGPTL2 was an independent risk factor for the progression of DKD during follow-up periods. In cultured podocytes, ANGPTL2 directly increased albumin permeability through the translocation of zonula occludens-1 from the membrane to the cytosol via activation of focal adhesion kinase. Conclusions: ANGPTL2 might be directly involved in podocyte dysfunction and independently associated with the progression of DKD stages.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína 2 Semelhante a Angiopoietina , Células Cultivadas , Estudos de Coortes , Estudos Transversais , Nefropatias Diabéticas/patologia , Epigênese Genética , Feminino , Quinase 1 de Adesão Focal/metabolismo , Seguimentos , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Podócitos/patologia , Regiões Promotoras Genéticas , Estudos Retrospectivos , Proteína da Zônula de Oclusão-1/metabolismo
9.
Oncogene ; 37(22): 2903-2920, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29515232

RESUMO

The tumor microenvironment promotes epigenetic changes in tumor cells associated with tumor aggressiveness. Here we report that in primary tumor cells, increased interleukin-6 (IL-6) expression brought on by DNA demethylation of its promoter by ten-eleven translocation 2 (TET2) promotes lung metastasis in osteosarcoma (OS). Xenograft experiments show increased IL-6 expression and decreased methylation of its promoter in OS cells after implantation relative to before implantation. In addition, changes in IL-6 methylation and expression seen in OS cells at the primary site were maintained at the metastatic site. TET2 knockdown in OS cells suppressed upregulation of IL-6 and demethylation of its promoter in xenograft tumors and decreased tumor metastasis. We also present evidence showing that tumor cell-derived IL-6 facilitates glycolytic metabolism in tumor cells by activating the MEK/ERK1/2/hypoxia-inducible transcription factor-1α (HIF-1α) pathway and increases lung colonization by OS cells by upregulating expression of intercellular adhesion molecule-1 (ICAM-1), enhancing tumor metastasis. Blocking IL-6 signaling with a humanized monoclonal antibody against the IL-6 receptor reduced lung metastasis and prolonged survival of xenografted mice. These findings suggest that TET2-dependent IL-6 induction enables acquisition of aggressive phenotypes in OS cells via the tumor microenvironment and that blocking IL-6 signaling could be serve as a potential therapy to antagonize metastasis.


Assuntos
Neoplasias Ósseas/patologia , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Interleucina-6/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Proteínas Proto-Oncogênicas/metabolismo , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Transplante de Neoplasias , Osteossarcoma/genética , Osteossarcoma/metabolismo , Proteínas Proto-Oncogênicas/genética , Microambiente Tumoral , Regulação para Cima
10.
Circ J ; 82(2): 437-447, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28890470

RESUMO

BACKGROUND: Recently, it was reported that angiopoietin-like protein 2 (ANGPTL2) secreted from a pathologically stressed heart accelerates cardiac dysfunction in an autocrine/paracrine manner, and that suppression of ANGPTL2 production in the heart restored cardiac function and myocardial energy metabolism, thereby blocking heart failure (HF) development. Interestingly, circulating ANGPTL2 concentrations reportedly increase in HF patients, suggesting a possible endocrine effect on cardiac dysfunction. However, it remains unclear why circulating ANGPTL2 increases in those subjects and whether circulating ANGPTL2 alters cardiac function in an endocrine manner.Methods and Results:It was found that circulating ANGPTL2 levels are positively correlated with left atrial diameter and pulmonary capillary wedge pressure, and are inversely proportional to the percent of ejection fraction in patients with dilated cardiomyopathy. Furthermore, in mice, circulating ANGPTL2 concentrations increased as HF developed following transverse aorta constriction (TAC), and were inversely correlated with the percent of fractional shortening. Interestingly, although circulating ANGPTL2 concentrations significantly increased in transgenic mice overexpressing keratinocyte-derived ANGPTL2, no pathological cardiac remodeling was seen. Furthermore, it was observed that there was no difference in HF development between transgenic mice and controls following TAC surgery. CONCLUSIONS: Circulating ANGPTL2 levels increase in subjects experiencing cardiac dysfunction. However, circulating ANGPTL2 does not promote cardiac dysfunction in an endocrine manner, and increased levels of circulating ANGPTL2 seen during HF are a secondary effect of increased ANGPTL2 secretion from stressed hearts in HF pathologies.


Assuntos
Proteínas Semelhantes a Angiopoietina/sangue , Cardiopatias/sangue , Insuficiência Cardíaca/sangue , Adulto , Idoso , Proteína 2 Semelhante a Angiopoietina , Animais , Cardiomiopatia Dilatada/sangue , Feminino , Insuficiência Cardíaca/prevenção & controle , Humanos , Queratinócitos/química , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo
11.
J Biol Chem ; 293(5): 1596-1609, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191837

RESUMO

Skeletal muscle atrophy, or sarcopenia, is commonly observed in older individuals and in those with chronic disease and is associated with decreased quality of life. There is recent medical and broad concern that sarcopenia is rapidly increasing worldwide as populations age. At present, strength training is the only effective intervention for preventing sarcopenia development, but it is not known how this exercise regimen counteracts this condition. Here, we report that expression of the inflammatory mediator angiopoietin-like protein 2 (ANGPTL2) increases in skeletal muscle of aging mice. Moreover, in addition to exhibiting increased inflammation and accumulation of reactive oxygen species (ROS), denervated atrophic skeletal muscles in a mouse model of denervation-induced muscle atrophy had increased ANGPTL2 expression. Interestingly, mice with a skeletal myocyte-specific Angptl2 knockout had attenuated inflammation and ROS accumulation in denervated skeletal muscle, accompanied by increased satellite cell activity and inhibition of muscular atrophy compared with mice harboring wildtype Angptl2 Moreover, consistent with these phenotypes, wildtype mice undergoing exercise training displayed decreased ANGPTL2 expression in skeletal muscle. In conclusion, ANGPTL2 up-regulation in skeletal myocytes accelerates muscle atrophy, and exercise-induced attenuation of ANGPTL2 expression in those tissues may partially explain how exercise training prevents sarcopenia.


Assuntos
Envelhecimento/metabolismo , Proteínas Semelhantes a Angiopoietina/biossíntese , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Sarcopenia/metabolismo , Regulação para Cima , Envelhecimento/genética , Envelhecimento/patologia , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Condicionamento Físico Animal , Sarcopenia/genética , Sarcopenia/patologia , Sarcopenia/prevenção & controle
12.
EMBO J ; 36(4): 409-424, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28043948

RESUMO

The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Dysregulation of intestinal epithelial homeostasis leads to severe inflammatory bowel disease. Additionally, aberrant signaling by the secreted protein angiopoietin-like protein 2 (ANGPTL2) causes chronic inflammation in a variety of diseases. However, little is known about the physiologic role of ANGPTL2 in normal tissue homeostasis and during wound repair following injury. Here, we assessed ANGPTL2 function in intestinal physiology and disease in vivo Although intestinal development proceeded normally in Angptl2-deficient mice, expression levels of the intestinal stem cell (ISC) marker gene Lgr5 decreased, which was associated with decreased transcriptional activity of ß-catenin in Angptl2-deficient mice. Epithelial regeneration after injury was significantly impaired in Angptl2-deficient relative to wild-type mice. ANGPTL2 was expressed and functioned within the mesenchymal compartment cells known as intestinal subepithelial myofibroblasts (ISEMFs). ANGPTL2 derived from ISEMFs maintained the intestinal stem cell niche by modulating levels of competing signaling between bone morphogenetic protein (BMP) and ß-catenin. These results support the importance of ANGPTL2 in the stem cell niche in regulating stemness and epithelial wound healing in the intestine.


Assuntos
Angiopoietinas/biossíntese , Regulação da Expressão Gênica , Homeostase , Mucosa Intestinal/lesões , Mucosa Intestinal/fisiologia , Regeneração , Nicho de Células-Tronco , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/deficiência , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/análise , Cicatrização , beta Catenina/análise
13.
PLoS One ; 11(11): e0166285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27861531

RESUMO

Ischemic stroke is a leading cause of death and disability worldwide. Several reports suggest that acute inflammation after ischemia-reperfusion exacerbates brain damage; however, molecular mechanisms underlying this effect remain unclear. Here, we report that MAC-3-positive immune cells, including infiltrating bone marrow-derived macrophages and activated microglia, express abundant angiopoietin-like protein (ANGPTL) 2 in ischemic mouse brain in a transient middle cerebral artery occlusion (MCAO) model. Both neurological deficits and infarct volume decreased in transient MCAO model mice established in Angptl2 knockout (KO) relative to wild-type mice. Acute brain inflammation after ischemia-reperfusion, as estimated by expression levels of pro-inflammatory cytokines such as interleukin (IL)-1ß and tumor necrosis factor alpha (TNF)-α, was significantly suppressed in Angptl2 KO compared to control mice. Moreover, analysis employing bone marrow chimeric models using Angptl2 KO and wild-type mice revealed that infiltrated bone marrow-derived macrophages secreting ANGPTL2 significantly contribute to acute brain injury seen after ischemia-reperfusion. These studies demonstrate that infiltrating bone marrow-derived macrophages promote inflammation and injury in affected brain areas after ischemia-reperfusion, likely via ANGPTL2 secretion in the acute phase of ischemic stroke.


Assuntos
Angiopoietinas/genética , Encéfalo/metabolismo , Encéfalo/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Biomarcadores , Encéfalo/irrigação sanguínea , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Neurônios/metabolismo , Neurônios/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
Sci Rep ; 6: 34690, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698489

RESUMO

Psoriasis is a chronic inflammatory skin disease marked by aberrant tissue repair. Mutant mice modeling psoriasis skin characteristics have provided useful information relevant to molecular mechanisms and could serve to evaluate therapeutic strategies. Here, we found that epidermal ANGPTL6 expression was markedly induced during tissue repair in mice. Analysis of mice overexpressing ANGPTL6 in keratinocytes (K14-Angptl6 Tg mice) revealed that epidermal ANGPTL6 activity promotes aberrant epidermal barrier function due to hyperproliferation of prematurely differentiated keratinocytes. Moreover, skin tissues of K14-Angptl6 Tg mice showed aberrantly activated skin tissue inflammation seen in psoriasis. Levels of the proteins S100A9, recently proposed as therapeutic targets for psoriasis, also increased in skin tissue of K14-Angptl6 Tg mice, but psoriasis-like inflammatory phenotypes in those mice were not rescued by S100A9 deletion. This finding suggests that decreasing S100A9 levels may not ameliorate all cases of psoriasis and that diverse mechanisms underlie the condition. Finally, we observed enhanced levels of epidermal ANGPTL6 in tissue specimens from some psoriasis patients. We conclude that the K14-Angptl6 Tg mouse is useful to investigate psoriasis pathogenesis and for preclinical testing of new therapeutics. Our study also suggests that ANGPTL6 activation in keratinocytes enhances psoriasis susceptibility.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Calgranulina A/genética , Calgranulina B/genética , Queratinócitos/metabolismo , Psoríase/genética , Adulto , Proteína 6 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Animais , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Estudos de Casos e Controles , Modelos Animais de Doenças , Epiderme/metabolismo , Epiderme/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Psoríase/metabolismo , Psoríase/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Nat Commun ; 7: 13016, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677409

RESUMO

A cardioprotective response that alters ventricular contractility or promotes cardiomyocyte enlargement occurs with increased workload in conditions such as hypertension. When that response is excessive, pathological cardiac remodelling occurs, which can progress to heart failure, a leading cause of death worldwide. Mechanisms underlying this response are not fully understood. Here, we report that expression of angiopoietin-like protein 2 (ANGPTL2) increases in pathologically-remodeled hearts of mice and humans, while decreased cardiac ANGPTL2 expression occurs in physiological cardiac remodelling induced by endurance training in mice. Mice overexpressing ANGPTL2 in heart show cardiac dysfunction caused by both inactivation of AKT and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA)2a signalling and decreased myocardial energy metabolism. Conversely, Angptl2 knockout mice exhibit increased left ventricular contractility and upregulated AKT-SERCA2a signalling and energy metabolism. Finally, ANGPTL2-knockdown in mice subjected to pressure overload ameliorates cardiac dysfunction. Overall, these studies suggest that therapeutic ANGPTL2 suppression could antagonize development of heart failure.

16.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L704-L713, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27542805

RESUMO

Angiopoietin-like protein 2 (ANGPTL2) is a chronic inflammatory mediator that, when deregulated, is associated with various pathologies. However, little is known about its activity in lung. To assess a possible lung function, we generated a rabbit monoclonal antibody that specifically recognizes mouse ANGPTL2 and then evaluated protein expression in mouse lung tissue. We observed abundant ANGPTL2 expression in both alveolar epithelial type I and type II cells and in resident alveolar macrophages under normal conditions. To assess ANGPTL2 function, we compared lung phenotypes in Angptl2 knockout (KO) and wild-type mice but observed no overt changes. We then generated a bleomycin-induced interstitial pneumonia model using wild-type and Angptl2 KO mice. Bleomycin-treated wild-type mice showed specifically upregulated ANGPTL2 expression in areas of severe fibrosing interstitial pneumonia, while Angptl2 KO mice developed more severe lung fibrosis than did comparably treated wild-type mice. Lung fibrosis seen following bone marrow transplant was comparable in wild-type or Angptl2 KO mice treated with bleomycin, suggesting that Angptl2 loss in myeloid cells does not underlie fibrotic phenotypes. We conclude that Angptl2 deficiency in lung epithelial cells and resident alveolar macrophages causes severe lung fibrosis seen following bleomycin treatment, suggesting that ANGPTL2 derived from these cell types plays a protective role against fibrosis in lung.


Assuntos
Angiopoietinas/genética , Doenças Pulmonares Intersticiais/genética , Fibrose Pulmonar/genética , Células 3T3-L1 , Células Epiteliais Alveolares/metabolismo , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/metabolismo , Animais , Bleomicina , Pulmão/patologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/patologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Trombospondina 1/genética , Trombospondina 1/metabolismo
17.
J Biol Chem ; 291(36): 18843-52, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27402837

RESUMO

Macrophages play crucial roles in combatting infectious disease by promoting inflammation and phagocytosis. Angiopoietin-like protein 2 (ANGPTL2) is a secreted factor that induces tissue inflammation by attracting and activating macrophages to produce inflammatory cytokines in chronic inflammation-associated diseases such as obesity-associated metabolic syndrome, atherosclerosis, and rheumatoid arthritis. Here, we asked whether and how ANGPTL2 activates macrophages in the innate immune response. ANGPTL2 was predominantly expressed in proinflammatory mouse bone marrow-derived differentiated macrophages (GM-BMMs) following GM-CSF treatment relative to anti-inflammatory cells (M-BMMs) established by M-CSF treatment. Expression of the proinflammatory markers IL-1ß, IL-12p35, and IL-12p40 significantly decreased in GM-BMMs from Angptl2-deficient compared with wild-type (WT) mice, suggestive of attenuated proinflammatory activity. We also report that ANGPTL2 inflammatory signaling is transduced through integrin α5ß1 rather than through paired immunoglobulin-like receptor B. Interestingly, Angptl2-deficient mice were more susceptible to infection with Salmonella enterica serovar Typhimurium than were WT mice. Moreover, nitric oxide (NO) production by Angptl2-deficient GM-BMMs was significantly lower than in WT GM-BMMs. Collectively, our findings suggest that macrophage-derived ANGPTL2 promotes an innate immune response in those cells by enhancing proinflammatory activity and NO production required to fight infection.


Assuntos
Angiopoietinas/imunologia , Predisposição Genética para Doença , Imunidade Inata , Macrófagos/imunologia , Óxido Nítrico/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/genética , Animais , Feminino , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Infecções por Salmonella/genética
18.
Kidney Int ; 89(2): 327-41, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26806834

RESUMO

Renal fibrosis is a common pathological consequence of chronic kidney disease (CKD) with tissue fibrosis closely associated with chronic inflammation in numerous pathologies. However, molecular mechanisms underlying that association, particularly in the kidney, remain unclear. Here, we determine whether there is a molecular link between chronic inflammation and tissue fibrosis in CKD progression. Histological analysis of human kidneys indicated abundant expression of angiopoietin-like protein 2 (ANGPTL2) in renal tubule epithelial cells during progression of renal fibrosis. Numerous ANGPTL2-positive renal tubule epithelial cells colocalized with cells positive for transforming growth factor (TGF)-ß1, a critical mediator of tissue fibrosis. Analysis of M1 collecting duct cells in culture showed that TGF-ß1 increases ANGPTL2 expression by attenuating its repression through microRNA-221. Conversely, ANGPTL2 increased TGF-ß1 expression through α5ß1 integrin-mediated activation of extracellular signal-regulated kinase. Furthermore, ANGPTL2 deficiency in a mouse unilateral ureteral obstruction model significantly reduced renal fibrosis by decreasing TGF-ß1 signal amplification in kidney. Thus, ANGPTL2 and TGF-ß1 positively regulate each other as renal fibrosis progresses. Our study provides insight into molecular mechanisms underlying chronic inflammation and tissue fibrosis and identifies potential therapeutic targets for CKD treatment.


Assuntos
Angiopoietinas/metabolismo , MicroRNAs/metabolismo , Insuficiência Renal Crônica/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Integrina alfa5beta1/metabolismo , Rim/patologia , Túbulos Renais/imunologia , Túbulos Renais/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Insuficiência Renal Crônica/patologia
20.
Sci Rep ; 5: 9170, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25773070

RESUMO

Bone metastasis of breast cancer cells is a major concern, as it causes increased morbidity and mortality in patients. Bone tissue-derived CXCL12 preferentially recruits breast cancer cells expressing CXCR4 to bone metastatic sites. Thus, understanding how CXCR4 expression is regulated in breast cancer cells could suggest approaches to decrease bone metastasis of breast tumor cells. Here, we show that tumor cell-derived angiopoietin-like protein 2 (ANGPTL2) increases responsiveness of breast cancer cells to CXCL12 by promoting up-regulation of CXCR4 in those cells. In addition, we used a xenograft mouse model established by intracardiac injection of tumor cells to show that ANGPTL2 knockdown in breast cancer cells attenuates tumor cell responsiveness to CXCL12 by decreasing CXCR4 expression in those cells, thereby decreasing bone metastasis. Finally, we found that ANGPTL2 and CXCR4 expression levels within primary tumor tissues from breast cancer patients are positively correlated. We conclude that tumor cell-derived ANGPTL2 may increase bone metastasis by enhancing breast tumor cell responsiveness to CXCL12 signaling through up-regulation of tumor cell CXCR4 expression. These findings may suggest novel therapeutic approaches to treat metastatic breast cancer.


Assuntos
Angiopoietinas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias da Mama/patologia , Receptores CXCR4/metabolismo , Proteína 2 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/antagonistas & inibidores , Angiopoietinas/genética , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CXCL12/metabolismo , Feminino , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Proto-Oncogênica c-ets-1/antagonistas & inibidores , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Transdução de Sinais/genética , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...