Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(18): e2312992121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648479

RESUMO

Cortical neurons exhibit highly variable responses over trials and time. Theoretical works posit that this variability arises potentially from chaotic network dynamics of recurrently connected neurons. Here, we demonstrate that chaotic neural dynamics, formed through synaptic learning, allow networks to perform sensory cue integration in a sampling-based implementation. We show that the emergent chaotic dynamics provide neural substrates for generating samples not only of a static variable but also of a dynamical trajectory, where generic recurrent networks acquire these abilities with a biologically plausible learning rule through trial and error. Furthermore, the networks generalize their experience in the stimulus-evoked samples to the inference without partial or all sensory information, which suggests a computational role of spontaneous activity as a representation of the priors as well as a tractable biological computation for marginal distributions. These findings suggest that chaotic neural dynamics may serve for the brain function as a Bayesian generative model.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Teorema de Bayes , Rede Nervosa/fisiologia , Dinâmica não Linear , Humanos , Aprendizagem/fisiologia , Animais , Encéfalo/fisiologia
2.
Phys Rev E ; 109(2-1): 024217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491619

RESUMO

We propose a method to reconstruct the phase dynamics in rhythmical interacting systems from macroscopic responses to weak inputs by developing linear and nonlinear response theories, which predict the responses in a given system. By solving an inverse problem, the method infers an unknown system: the natural frequency distribution, the coupling function, and the time delay which is inevitable in real systems. In contrast to previous methods, our method requires neither strong invasiveness nor microscopic observations. We demonstrate that the method reconstructs two phase systems from observed responses accurately. The qualitative methodological advantages demonstrated by our quantitative numerical examinations suggest its broad applicability in various fields, including brain systems, which are often observed through macroscopic signals such as electroencephalograms and functional magnetic response imaging.

3.
Neural Comput ; 32(11): 2187-2211, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32946715

RESUMO

Recent remarkable advances in experimental techniques have provided a background for inferring neuronal couplings from point process data that include a great number of neurons. Here, we propose a systematic procedure for pre- and postprocessing generic point process data in an objective manner to handle data in the framework of a binary simple statistical model, the Ising or generalized McCulloch-Pitts model. The procedure has two steps: (1) determining time bin size for transforming the point process data into discrete-time binary data and (2) screening relevant couplings from the estimated couplings. For the first step, we decide the optimal time bin size by introducing the null hypothesis that all neurons would fire independently, then choosing a time bin size so that the null hypothesis is rejected with the strict criteria. The likelihood associated with the null hypothesis is analytically evaluated and used for the rejection process. For the second postprocessing step, after a certain estimator of coupling is obtained based on the preprocessed data set (any estimator can be used with the proposed procedure), the estimate is compared with many other estimates derived from data sets obtained by randomizing the original data set in the time direction. We accept the original estimate as relevant only if its absolute value is sufficiently larger than those of randomized data sets. These manipulations suppress false positive couplings induced by statistical noise. We apply this inference procedure to spiking data from synthetic and in vitro neuronal networks. The results show that the proposed procedure identifies the presence or absence of synaptic couplings fairly well, including their signs, for the synthetic and experimental data. In particular, the results support that we can infer the physical connections of underlying systems in favorable situations, even when using a simple statistical model.


Assuntos
Modelos Neurológicos , Modelos Estatísticos , Neurônios/fisiologia , Animais , Simulação por Computador , Humanos
4.
Phys Rev E ; 94(1-1): 012213, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27575129

RESUMO

A large variety of rhythms are observed in nature. Rhythms such as electroencephalogram signals in the brain can often be regarded as interacting. In this study, we investigate the dynamical properties of rhythmic systems in two populations of phase oscillators with different frequency distributions. We assume that the average frequency ratio between two populations closely approximates some small integer. Most importantly, we adopt a specific coupling function derived from phase reduction theory. Under some additional assumptions, the system of two populations of coupled phase oscillators reduces to a low-dimensional system in the continuum limit. Consequently, we find chimera states in which clustering and incoherent states coexist. Finally, we confirm consistent behaviors of the derived low-dimensional model and the original model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA