Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443467

RESUMO

Preparation of high-performance organic semiconductor devices requires precise control over the active-layer structure. To this end, we are working on the controlled deposition of small-molecule semiconductors through a photoprecursor approach wherein a soluble precursor compound is processed into a thin-film form and then converted to a target semiconductor by light irradiation. This approach can be applied to layer-by-layer solution deposition, enabling the preparation of p-i-n-type photovoltaic active layers by wet processing. However, molecular design principles are yet to be established toward obtaining desirable thin-film morphology via this unconventional method. Herein, we evaluate a new windmill-shaped molecule with anthryl blades, 1,3,5-tris(5-(anthracen-2-yl)thiophen-2-yl)benzene, which is designed to deposit via the photoprecursor approach for use as the p-sublayer in p-i-n-type organic photovoltaic devices (OPVs). The new compound is superior to the corresponding precedent p-sublayer materials in terms of forming smooth and homogeneous films, thereby leading to improved performance of p-i-n OPVs. Overall, this work demonstrates the effectiveness of the windmill-type architecture in preparing high-quality semiconducting thin films through the photoprecursor approach.

2.
Chem Sci ; 11(7): 1825-1831, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34123275

RESUMO

The recent surge in the efficiency of organic photovoltaic devices (OPVs) largely hinges on the reduction of energy loss (E loss) that leads to improvements in open-circuit voltage (V OC). However, there are still many unclarified factors regarding the relationship between the molecular structure and V OC, hampering the establishment of widely applicable, effective principles for the design of active-layer materials. In this contribution, we examine the origin of the large V OC shifts induced by minor structural differences in end-alkyl substituents on a series of anthracene-based p-type compounds. The examined p-type compounds are all highly crystalline, thereby enabling detailed investigation of the molecular packing with X-ray diffraction analysis. At the same time, they are strongly aggregating and hardly soluble; therefore, they are deposited with the aid of a photoprecursor approach which we have been employing for controlled deposition of insoluble acene-based organic semiconductors. The resultant OPVs afford the highest V OC of 0.966 V when the end-alkyl groups are 2-ethylbutyl, and the lowest of 0.419 V when n-butyl is used in replacement of 2-ethylbutyl. X-ray diffraction analyses and density-functional-theory calculations indicate a critical impact of the non-slipped herringbone arrangement on the observed large loss in V OC. This type of molecular arrangement is prohibited when branched alkyl chains are introduced at the ends of linear π-systems, which we consider an important factor contributing to the relatively high V OC obtained with the 2-ethylbutyl derivative. These results may serve as a basis of useful molecular-design rules to avoid unnecessary losses in V OC.

3.
Chempluschem ; 82(7): 1010-1014, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31961611

RESUMO

A newly prepared tetraazulene-fused tetracene diimide (TA-fused TDI) showed absorption in the near-IR region owing to the effective extension of the π-conjugated system as well as a large two-photon absorption cross-section (σ(2) =2140 GM) at 950 nm. Four reversible reduction processes and n-type semiconductivity were also confirmed as attractive electronic properties of this compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...