Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(37): 9888-9893, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847930

RESUMO

Nitric oxide (NO) plays diverse and significant roles in biological processes despite its cytotoxicity, raising the question of how biological systems control the action of NO to minimize its cytotoxicity in cells. As a great example of such a system, we found a possibility that NO-generating nitrite reductase (NiR) forms a complex with NO-decomposing membrane-integrated NO reductase (NOR) to efficiently capture NO immediately after its production by NiR in anaerobic nitrate respiration called denitrification. The 3.2-Å resolution structure of the complex of one NiR functional homodimer and two NOR molecules provides an idea of how these enzymes interact in cells, while the structure may not reflect the one in cells due to the membrane topology. Subsequent all-atom molecular dynamics (MD) simulations of the enzyme complex model in a membrane and structure-guided mutagenesis suggested that a few interenzyme salt bridges and coulombic interactions of NiR with the membrane could stabilize the complex of one NiR homodimer and one NOR molecule and contribute to rapid NO decomposition in cells. The MD trajectories of the NO diffusion in the NiR:NOR complex with the membrane showed that, as a plausible NO transfer mechanism, NO released from NiR rapidly migrates into the membrane, then binds to NOR. These results help us understand the mechanism of the cellular control of the action of cytotoxic NO.


Assuntos
Anaerobiose/fisiologia , Desnitrificação/fisiologia , Óxido Nítrico/metabolismo , Nitrito Redutases/metabolismo , Oxirredutases/metabolismo , Pseudomonas aeruginosa/metabolismo , Biofilmes/crescimento & desenvolvimento , Fibrose Cística/microbiologia , Humanos , Simulação de Dinâmica Molecular , Nitrito Redutases/química , Oxirredutases/química , Estrutura Secundária de Proteína
2.
Biochim Biophys Acta ; 1837(7): 1019-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24569054

RESUMO

Nitric oxide reductase (NOR) catalyzes the reduction of nitric oxide to generate nitrous oxide. We recently reported on the crystal structure of a quinol-dependent NOR (qNOR) from Geobacillus stearothermophilus [Y. Matsumoto, T. Tosha, A.V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro, Nat. Struct. Mol. Biol. 19 (2012) 238-246], and suggested that a water channel from the cytoplasm, which is not observed in cytochrome c-dependent NOR (cNOR), functions as a pathway transferring catalytic protons. Here, we further investigated the functional and structural properties of qNOR, and compared the findings with those for cNOR. The pH optimum for the enzymatic reaction of qNOR was in the alkaline range, whereas Pseudomonas aeruginosa cNOR showed a higher activity at an acidic pH. The considerably slower reduction rate, and a correlation of the pH dependence for enzymatic activity and the reduction rate suggest that the reduction process is the rate-determining step for the NO reduction by qNOR, while the reduction rate for cNOR was very fast and therefore is unlikely to be the rate-determining step. A close examination of the heme/non-heme iron binuclear center by resonance Raman spectroscopy indicated that qNOR has a more polar environment at the binuclear center compared with cNOR. It is plausible that a water channel enhances the accessibility of the active site to solvent water, creating a more polar environment in qNOR. This structural feature could control certain properties of the active site, such as redox potential, which could explain the different catalytic properties of the two NORs. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.


Assuntos
Proteínas de Bactérias/metabolismo , Domínio Catalítico , Geobacillus stearothermophilus/enzimologia , Oxirredutases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Hidroquinonas/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...