Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279353

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) and employs angiotensin-converting enzyme 2 (ACE2) as the receptor. Although the expression of ACE2 is crucial for cellular entry, we found that the interaction between ACE2 and the Spike (S) protein in the same cells led to its downregulation through degradation in the lysosomal compartment via the endocytic pathway. Interestingly, the ability of the S protein from previous variants of concern (VOCs) to downregulate ACE2 was variant-dependent and correlated with disease severity. The S protein from the Omicron variant, associated with milder disease, exhibited a lower capacity to downregulate ACE2 than that of the Delta variant, which is linked to a higher risk of hospitalization. Chimeric studies between the S proteins from the Delta and Omicron variants revealed that both the receptor-binding domain (RBD) and the S2 subunit played crucial roles in the reduced ACE2 downregulation activity observed in the Omicron variant. In contrast, three mutations (L452R/P681R/D950N) located in the RBD, S1/S2 cleavage site, and HR1 domain were identified as essential for the higher ACE2 downregulation activity observed in the Delta variant compared to that in the other VOCs. Our results suggested that dysregulation of the renin-angiotensin system due to the ACE2 downregulation activity of the S protein of SARS-CoV-2 may play a key role in the pathogenesis of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Mutação , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Biol Pharm Bull ; 46(11): 1535-1547, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37914356

RESUMO

The introduction of combined anti-retroviral therapy (cART) in 1996, along with a continual breakthrough in anti-human immunodeficiency virus-1 (HIV-1) drugs, has improved the life expectancies of HIV-1-infected individuals. However, the incidence of drug-resistant viruses between individuals undergoing cART and treatment-naïve individuals is a common challenge. Therefore, there is a requirement to explore potential drug targets by considering various stages of the viral life cycle. For instance, the late stage, or viral release stage, remains uninvestigated extensively in antiviral drug discovery. In this study, we prepared a natural plant library and selected candidate plant extracts that inhibited HIV-1 release based on our laboratory-established screening system. The plant extracts from Epilobium hirsutum L. and Chamerion angustifolium (L.) Holub, belonging to the family Onagraceae, decreased HIV-1 release and accelerated the apoptosis in HIV-1-infected T cells but not uninfected T cells. A flavonol glycoside quercetin with oenothein B in Onagraceae reduced HIV-1 release in HIV-1-infected T cells. Moreover, extracts from Chamerion angustifolium (L.) Holub and Senna alexandrina Mill. inhibited the infectivity of progeny viruses. Together, these results suggest that C. angustifolium (L.) Holub contains quercetin with oenothein B that synergistically blocks viral replication and kills infected cells via an apoptotic pathway. Consequently, the plant extracts from the plant library of Turkey might be suitable candidates for developing novel anti-retroviral drugs that target the late phase of the HIV-1 life cycle.


Assuntos
HIV-1 , Onagraceae , Humanos , Quercetina/farmacologia , Extratos Vegetais/farmacologia , Turquia , Apoptose
3.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38003710

RESUMO

Human T-cell tropic virus type 1 (HTLV-1) is known to be mainly transmitted by cell-to-cell contact due to the lower infectivity of the cell-free virion. However, the reasons why cell-free HTLV-1 infection is poor remain unknown. In this study, we found that the retrovirus pseudotyped with HTLV-1 viral envelope glycoprotein (Env) was infectious when human immunodeficiency virus type 1 (HIV-1) was used to produce the virus. We found that the incorporation of HTLV-1 Env into virus-like particles (VLPs) was low when HTLV-1 Gag was used to produce VLPs, whereas VLPs produced using HIV-1 Gag efficiently incorporated HTLV-1 Env. The production of VLPs using Gag chimeras between HTLV-1 and HIV-1 Gag and deletion mutants of HIV-1 Gag showed that the p6 domain of HIV-1 Gag was responsible for the efficient incorporation of HTLV-1 Env into the VLPs. Further mutagenic analyses of the p6 domain of HIV-1 Gag revealed that the PTAP motif in the p6 domain of HIV-1 Gag facilitates the incorporation of HTLV-1 Env into VLPs. Since the PTAP motif is known to interact with tumor susceptibility gene 101 (TSG101) during the budding process, we evaluated the effect of TSG101 knockdown on the incorporation of HTLV-1 Env into VLPs. We found that TSG101 knockdown suppressed the incorporation of HTLV-1 Env into VLPs and decreased the infectivity of cell-free HIV-1 pseudotyped with HTLV-1 Env. Our results suggest that the interaction of TSG101 with the PTAP motif of the retroviral L domain is involved not only in the budding process but also in the efficient incorporation of HTLV-1 Env into the cell-free virus.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Humanos , Motivos de Aminoácidos , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Vírion/genética , Vírion/metabolismo , HIV-1/fisiologia , Produtos do Gene env/metabolismo
4.
J Virol ; 96(9): e0035622, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35420440

RESUMO

Human endogenous retroviruses (HERVs) occupy approximately 8% of the human genome. HERVs, transcribed in early embryos, are epigenetically silenced in somatic cells, except under pathological conditions. HERV-K is thought to protect embryos from exogenous viral infection. However, uncontrolled HERV-K expression in somatic cells has been implicated in several diseases. Here, we show that SOX2, which plays a key role in maintaining the pluripotency of stem cells, is critical for HERV-K LTR5Hs. HERV-K undergoes retrotransposition within producer cells in the absence of Env expression. Furthermore, we identified new HERV-K integration sites in long-term culture of induced pluripotent stem cells that express SOX2. These results suggest that the strict dependence of HERV-K on SOX2 has allowed HERV-K to protect early embryos during evolution while limiting the potentially harmful effects of HERV-K retrotransposition on host genome integrity in these early embryos. IMPORTANCE Human endogenous retroviruses (HERVs) account for approximately 8% of the human genome; however, the physiological role of HERV-K remains unknown. This study found that HERV-K LTR5Hs and LTR5B were transactivated by SOX2, which is essential for maintaining and reestablishing pluripotency. HERV-K can undergo retrotransposition within producer cells without env expression, and new integration sites may affect cell proliferation. In induced pluripotent stem cells (iPSCs), genomic impairment due to HERV-K retrotransposition has been identified, but it is a rare event. Considering the retention of SOX2-responsive elements in the HERV-K long terminal repeat (LTR) for over 20 million years, we conclude that HERV-K may play important physiological roles in SOX2-expressing cells.


Assuntos
Retrovirus Endógenos , Células-Tronco Pluripotentes Induzidas , Fatores de Transcrição SOXB1 , Retrovirus Endógenos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Fatores de Transcrição SOXB1/genética , Sequências Repetidas Terminais/genética , Integração Viral
5.
J Virol ; 94(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32295903

RESUMO

Cell entry by HIV-1 is mediated by its principal receptor, CD4, and a coreceptor, either CCR5 or CXCR4, with viral envelope glycoprotein gp120. Generally, CCR5-using HIV-1 variants, called R5, predominate over most of the course of infection, while CXCR4-using HIV-1 variants (variants that utilize both CCR5 and CXCR4 [R5X4, or dual] or CXCR4 alone [X4]) emerge at late-stage infection in half of HIV-1-infected individuals and are associated with disease progression. Although X4 variants also appear during acute-phase infection in some cases, these variants apparently fall to undetectable levels thereafter. In this study, replication-competent X4 variants were isolated from plasma of drug treatment-naive individuals infected with HIV-1 strain CRF01_AE, which dominantly carries viral RNA (vRNA) of R5 variants. Next-generation sequencing (NGS) confirmed that sequences of X4 variants were indeed present in plasma vRNA from these individuals as a minor population. On the other hand, in one individual with a mixed infection in which X4 variants were dominant, only R5 replication-competent variants were isolated from plasma. These results indicate the existence of replication-competent variants with different coreceptor usage as minor populations.IMPORTANCE The coreceptor switch of HIV-1 from R5 to CXCR4-using variants (R5X4 or X4) has been observed in about half of HIV-1-infected individuals at late-stage infection with loss of CD4 cell count and disease progression. However, the mechanisms that underlie the emergence of CXCR4-using variants at this stage are unclear. In the present study, CXCR4-using X4 variants were isolated from plasma samples of HIV-1-infected individuals that dominantly carried vRNA of R5 variants. The sequences of the X4 variants were detected as a minor population using next-generation sequencing. Taken together, CXCR4-using variants at late-stage infection are likely to emerge when replication-competent CXCR4-using variants are maintained as a minor population during the course of infection. The present study may support the hypothesis that R5-to-X4 switching is mediated by the expansion of preexisting X4 variants in some cases.


Assuntos
Infecções por HIV/imunologia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Receptores de HIV/imunologia , Adulto , Idoso , Sequência de Aminoácidos , Contagem de Linfócito CD4 , Coinfecção , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , Ligação Proteica , RNA Viral/genética , RNA Viral/imunologia , Receptores CCR5/imunologia , Receptores CXCR4/imunologia , Receptores de HIV/genética , Tropismo Viral/genética , Tropismo Viral/imunologia , Ligação Viral , Internalização do Vírus
6.
Retrovirology ; 14(1): 27, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446240

RESUMO

BACKGROUND: Human endogenous retroviruses (HERVs), the remnants of ancient retroviral infections, constitute approximately 8% of human genomic DNA. Since HERV-K Gag expression is induced by HIV-1 Tat in T cells, induced HERV-K proteins could affect HIV-1 replication. Indeed, previously we showed that HERV-K Gag and HIV-1 Gag coassemble and that this appears to correlate with the effect of HERV-K Gag expression on HIV-1 particle release and its infectivity. We further showed that coassembly requires both MA and NC domains, which presumably serve as scaffolding for Gag via their abilities to bind membrane and RNA, respectively. Notably, however, despite possessing these abilities, MLV Gag failed to coassemble with HIV-1 Gag and did not affect assembly and infectivity of HIV-1 particles. It is unclear how the specificity of coassembly is determined. RESULTS: Here, we showed that coexpression of HERV-K Gag with HIV-1 Gag changed size and morphology of progeny HIV-1 particles and severely diminished infectivity of such progeny viruses. We further compared HERV-K-MLV chimeric constructs to identify molecular determinants for coassembly specificity and for inhibition of HIV-1 release efficiency and infectivity. We found that the CA N-terminal domain (NTD) of HERV-K Gag is important for the reduction of the HIV-1 release efficiency, whereas both CA-NTD and major homology region of HERV-K Gag contribute to colocalization with HIV-1 Gag. Interestingly, these regions of HERV-K Gag were not required for reduction of progeny HIV-1 infectivity. CONCLUSIONS: Our results showed that HERV-K Gag CA is important for reduction of HIV-1 release and infectivity but the different regions within CA are involved in the effects on the HIV-1 release and infectivity. Altogether, these findings revealed that HERV-K Gag interferes the HIV-1 replication by two distinct molecular mechanisms.


Assuntos
Retrovirus Endógenos/fisiologia , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Retrovirus Endógenos/genética , Produtos do Gene gag/genética , HIV-1/genética , Células HeLa , Humanos , Liberação de Vírus , Replicação Viral
7.
J Virol ; 89(1): 502-11, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25339765

RESUMO

UNLABELLED: Interaction of the envelope glycoprotein (Env) of human T-lymphotropic virus 1 (HTLV-1) with the glucose transporter type 1 (GLUT1) expressed in target cells is essential for viral entry. This study found that the expression level of GLUT1 in virus-producing 293T cells was inversely correlated with HTLV-1 Env-mediated fusion activity and infectivity. Chimeric studies between GLUT1 and GLUT3 indicated that the extracellular loop 6 (ECL6) of GLUT1 is important for the inhibition of cell-cell fusion mediated by Env. When GLUT1 was translocated into the plasma membrane from intracellular storage sites by bafilomycin A1 (BFLA1) treatment in 293T cells, HTLV-1 Env-mediated cell fusion and infection also were inhibited without the overexpression of GLUT1, indicating that the localization of GLUT1 in intracellular compartments rather than in the plasma membrane is crucial for the fusion activity of HTLV-1 Env. Immunoprecipitation and laser scanning confocal microscopic analyses indicated that under normal conditions, HTLV-1 Env and GLUT1 do not colocalize or interact. BFLA1 treatment induced this colocalization and interaction, indicating that GLUT1 normally accumulates in intracellular compartments separate from that of Env. Western blot analyses of FLAG-tagged HTLV-1 Env in virus-producing cells and the incorporation of HTLV-1 Env in virus-like particles (VLPs) indicate that the processing of Env is inhibited by either overexpression of GLUT1 or BFLA1 treatment in virus-producing 293T cells. This inhibition probably is due to the interaction of the Env with GLUT1 in intracellular compartments. Taken together, separate intracellular localizations of GLUT1 and HTLV-1 Env are required for the fusion activity and infectivity of HTLV-1 Env. IMPORTANCE: The deltaretrovirus HTLV-1 is a causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although HTLV-1 is a complex retrovirus that has accessory genes, no HTLV-1 gene product has yet been shown to regulate its receptor GLUT1 in virus-producing cells. In this study, we found that a large amount of GLUT1 or translocation of GLUT1 to the plasma membrane from intracellular compartments in virus-producing cells enhances the colocalization and interaction of GLUT1 with HTLV-1 Env, leading to the inhibition of cell fusion activity and infectivity. The results of our study suggest that GLUT1 normally accumulates in separate intracellular compartments from Env, which is indeed required for the proper processing of Env.


Assuntos
Transportador de Glucose Tipo 1/análise , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Linfócitos/química , Linfócitos/virologia , Proteínas do Envelope Viral/análise , Internalização do Vírus , Linhagem Celular , Humanos , Imunoprecipitação , Microscopia Confocal , Mapeamento de Interação de Proteínas
8.
PLoS One ; 9(2): e89515, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586840

RESUMO

A CXCR4 inhibitor-resistant HIV-1 was isolated from a dual-X4 HIV-1 in vitro. The resistant variant displayed competitive resistance to the CXCR4 inhibitor AMD3100, indicating that the resistant variant had a higher affinity for CXCR4 than that of the wild-type HIV-1. Amino acid sequence analyses revealed that the resistant variant harbored amino acid substitutions in the V2, C2, and C4 regions, but no remarkable changes in the V3 loop. Site-directed mutagenesis confirmed that the changes in the C2 and C4 regions were principally involved in the reduced sensitivity to AMD3100. Furthermore, the change in the C4 region was associated with increased sensitivity to soluble CD4, and profoundly enhanced the entry efficiency of the virus. Therefore, it is likely that the resistant variant acquired the higher affinity for CD4/CXCR4 by the changes in non-V3 regions. Taken together, a CXCR4 inhibitor-resistant HIV-1 can evolve using a non-V3 pathway.


Assuntos
Farmacorresistência Viral/genética , Evolução Molecular , HIV-1/genética , Compostos Heterocíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Substituição de Aminoácidos/genética , Benzilaminas , Clonagem Molecular , Ciclamos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Análise de Sequência de Proteína , Internalização do Vírus
9.
Virology ; 452-453: 117-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24606688

RESUMO

Bimolecular fluorescence complementation (BiFC) and western blot analysis demonstrated that CCR5 exists as constitutive homo-oligomers, which was further enhanced by its antagonists such as maraviroc (MVC) and TAK-779. Staining by monoclonal antibodies recognizing different epitopes of CCR5 revealed that CCR5 oligomer was structurally different from the monomer. To determine which forms of CCR5 are well recognized by CCR5-using HIV-1 for the entry, BiFC-positive and -negative cell fractions in CD4-positive 293T cells were collected by fluorescent-activated cell sorter, and infected with luciferase-reporter HIV-1 pseudotyped with CCR5-using Envs including R5 and R5X4. R5 and dual-R5 HIV-1 substantially infected BiFC-negative fraction rather than BiFC-positive fraction, indicating the preferential recognition of monomeric CCR5 by R5 and dual-R5 Envs. Although CCR5 antagonists enhanced oligomerization of CCR5, MVC-resistant HIV-1 was found to still recognize both MVC-bound and -unbound forms of monomeric CCR5, suggesting the constrained use of monomeric CCR5 by R5 HIV-1.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Infecções por HIV/metabolismo , HIV-1/fisiologia , Receptores CCR5/metabolismo , Internalização do Vírus , Linhagem Celular , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Humanos , Receptores CCR5/química , Receptores CCR5/genética , Receptores de HIV/química , Receptores de HIV/genética , Receptores de HIV/metabolismo
10.
PLoS One ; 8(6): e65115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840315

RESUMO

Maraviroc, an (HIV-1) entry inhibitor, binds to CCR5 and efficiently prevents R5 human immunodeficiency virus type 1 (HIV-1) from using CCR5 as a coreceptor for entry into CD4(+) cells. However, HIV-1 can elude maraviroc by using the drug-bound form of CCR5 as a coreceptor. This property is known as noncompetitive resistance. HIV-1(V3-M5) derived from HIV-1(JR-FLan) is a noncompetitive-resistant virus that contains five mutations (I304V/F312W/T314A/E317D/I318V) in the gp120 V3 loop alone. To obtain genetic and structural insights into maraviroc resistance in HIV-1, we performed here mutagenesis and computer-assisted structural study. A series of site-directed mutagenesis experiments demonstrated that combinations of V3 mutations are required for HIV-1(JR-FLan) to replicate in the presence of 1 µM maraviroc, and that a T199K mutation in the C2 region increases viral fitness in combination with V3 mutations. Molecular dynamic (MD) simulations of the gp120 outer domain V3 loop with or without the five mutations showed that the V3 mutations induced (i) changes in V3 configuration on the gp120 outer domain, (ii) reduction of an anti-parallel ß-sheet in the V3 stem region, (iii) reduction in fluctuations of the V3 tip and stem regions, and (iv) a shift of the fluctuation site at the V3 base region. These results suggest that the HIV-1 gp120 V3 mutations that confer maraviroc resistance alter structure and dynamics of the V3 loop on the gp120 outer domain, and enable interactions between gp120 and the drug-bound form of CCR5.


Assuntos
Cicloexanos/farmacologia , Proteína gp120 do Envelope de HIV/química , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Simulação de Dinâmica Molecular , Triazóis/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Farmacorresistência Viral , Proteína do Núcleo p24 do HIV/biossíntese , Proteína gp120 do Envelope de HIV/genética , HIV-1/fisiologia , Células HeLa , Humanos , Maraviroc , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Replicação Viral/efeitos dos fármacos
11.
Virology ; 413(2): 293-9, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21440278

RESUMO

Maraviroc binds to the pocket of extracellular loops of the cell surface CCR5 and prevents R5 HIV-1 from using CCR5 as a coreceptor for entry into CD4-positive cells. To evaluate the contribution of the V3 loop structure in gp120 to maraviroc resistance, we isolated maraviroc-resistant variants from the V3 loop library virus (HIV-1(V3Lib)) containing a set of random combinations of 0-10 polymorphic mutations in vitro. HIV-1(V3Lib) at passage 17 could not be suppressed even at 10 µM (>1400-fold resistance), while HIV-1(JR-FL) at passage 17 revealed an 8-fold resistance to maraviroc. HIV-1(V3Lib-P17) contained T199K and T275M plus 5 mutations in the V3 loop, I304V/F312W/T314A/E317D/I318V. The profile of pseudotyped virus containing I304V/F312W/T314A/E317D/I318V in V3 loop alone revealed a typical noncompetitive resistance, although T199K and/or T275M could not confer noncompetitive resistance. This type of library virus is useful for isolation of escape viruses from effective entry inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Cicloexanos/farmacologia , Proteína gp120 do Envelope de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Polimorfismo Genético , Triazóis/farmacologia , Sequência de Aminoácidos , Linhagem Celular , Farmacorresistência Viral , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Maraviroc , Mutação , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...