Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328203

RESUMO

Cryogenic electron microscopy (cryo-EM) has now been widely used for determining multi-chain protein complexes. However, modeling a complex structure is challenging particularly when the map resolution is low, typically in the intermediate resolution range of 5 to 10 Å. Within this resolution range, even accurate structure fitting is difficult, let alone de novo modeling. To address this challenge, here we present DiffModeler, a fully automated method for modeling protein complex structures. DiffModeler employs a diffusion model for backbone tracing and integrates AlphaFold2-predicted single-chain structures for structure fitting. Extensive testing on cryo-EM maps at intermediate resolutions demonstrates the exceptional accuracy of DiffModeler in structure modeling, achieving an average TM-Score of 0.92, surpassing existing methodologies significantly. Notably, DiffModeler successfully modeled a protein complex composed of 47 chains and 13,462 residues, achieving a high TM-Score of 0.94. Further benchmarking at low resolutions (10-20 Å confirms its versatility, demonstrating plausible performance. Moreover, when coupled with CryoREAD, DiffModeler excels in constructing protein-DNA/RNA complex structures for near-atomic resolution maps (0-5 Å), showcasing state-of-the-art performance with average TM-Scores of 0.88 and 0.91 across two datasets.

2.
Nat Methods ; 21(1): 122-131, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066344

RESUMO

Three-dimensional structure modeling from maps is an indispensable step for studying proteins and their complexes with cryogenic electron microscopy. Although the resolution of determined cryogenic electron microscopy maps has generally improved, there are still many cases where tracing protein main chains is difficult, even in maps determined at a near-atomic resolution. Here we developed a protein structure modeling method, DeepMainmast, which employs deep learning to capture the local map features of amino acids and atoms to assist main-chain tracing. Moreover, we integrated AlphaFold2 with the de novo density tracing protocol to combine their complementary strengths and achieved even higher accuracy than each method alone. Additionally, the protocol is able to accurately assign the chain identity to the structure models of homo-multimers, which is not a trivial task for existing methods.


Assuntos
Aprendizado Profundo , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas/química , Microscopia Eletrônica , Conformação Proteica
3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38106200

RESUMO

The three-dimensional structure of a protein plays a fundamental role in determining its function and has an essential impact on understanding biological processes. Despite significant progress in protein structure prediction, such as AlphaFold2, challenges remain on those hard targets that Alphafold2 does not often perform well due to the complex folding of protein and a large number of possible conformations. Here we present a modified version of the AlphaFold2, called Distance-AF, which aims to improve the performance of AlphaFold2 by including distance constraints as input information. Distance-AF uses AlphaFold2's predicted structure as a starting point and incorporates distance constraints between amino acids to adjust folding of the protein structure until it meets the constraints. Distance-AF can correct the domain orientation on challenging targets, leading to more accurate structures with a lower root mean square deviation (RMSD). The ability of Distance-AF is also useful in fitting protein structures into cryo-electron microscopy maps.

4.
Nat Methods ; 20(11): 1739-1747, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783885

RESUMO

DNA and RNA play fundamental roles in various cellular processes, where their three-dimensional structures provide information critical to understanding the molecular mechanisms of their functions. Although an increasing number of nucleic acid structures and their complexes with proteins are determined by cryogenic electron microscopy (cryo-EM), structure modeling for DNA and RNA remains challenging particularly when the map is determined at a resolution coarser than atomic level. Moreover, computational methods for nucleic acid structure modeling are relatively scarce. Here, we present CryoREAD, a fully automated de novo DNA/RNA atomic structure modeling method using deep learning. CryoREAD identifies phosphate, sugar and base positions in a cryo-EM map using deep learning, which are traced and modeled into a three-dimensional structure. When tested on cryo-EM maps determined at 2.0 to 5.0 Å resolution, CryoREAD built substantially more accurate models than existing methods. We also applied the method to cryo-EM maps of biomolecular complexes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Aprendizado Profundo , Ácidos Nucleicos , Microscopia Crioeletrônica/métodos , Modelos Moleculares , RNA , DNA , Conformação Proteica
5.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37904978

RESUMO

Structure modeling from maps is an indispensable step for studying proteins and their complexes with cryogenic electron microscopy (cryo-EM). Although the resolution of determined cryo-EM maps has generally improved, there are still many cases where tracing protein main-chains is difficult, even in maps determined at a near atomic resolution. Here, we have developed a protein structure modeling method, called DeepMainmast, which employs deep learning to capture the local map features of amino acids and atoms to assist main-chain tracing. Moreover, since Alphafold2 demonstrates high accuracy in protein structure prediction, we have integrated complementary strengths of de novo density tracing using deep learning with Alphafold2's structure modeling to achieve even higher accuracy than each method alone. Additionally, the protocol is able to accurately assign chain identity to the structure models of homo-multimers.

6.
Proteins ; 91(12): 1658-1683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37905971

RESUMO

We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem.


Assuntos
Algoritmos , Mapeamento de Interação de Proteínas , Mapeamento de Interação de Proteínas/métodos , Conformação Proteica , Ligação Proteica , Simulação de Acoplamento Molecular , Biologia Computacional/métodos , Software
7.
Bioinformatics ; 39(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37549063

RESUMO

MOTIVATION: The tertiary structures of an increasing number of biological macromolecules have been determined using cryo-electron microscopy (cryo-EM). However, there are still many cases where the resolution is not high enough to model the molecular structures with standard computational tools. If the resolution obtained is near the empirical borderline (3-4.5 Å), improvement in the map quality facilitates structure modeling. RESULTS: We report EM-GAN, a novel approach that modifies an input cryo-EM map to assist protein structure modeling. The method uses a 3D generative adversarial network (GAN) that has been trained on high- and low-resolution density maps to learn the density patterns, and modifies the input map to enhance its suitability for modeling. The method was tested extensively on a dataset of 65 EM maps in the resolution range of 3-6 Å and showed substantial improvements in structure modeling using popular protein structure modeling tools. AVAILABILITY AND IMPLEMENTATION: https://github.com/kiharalab/EM-GAN, Google Colab: https://tinyurl.com/3ccxpttx.


Assuntos
Proteínas , Microscopia Crioeletrônica , Modelos Moleculares , Proteínas/química , Conformação Proteica
8.
Proteomics ; 23(17): e2200323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365936

RESUMO

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação Proteica
10.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 10-21, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601803

RESUMO

As more protein structure models have been determined from cryogenic electron microscopy (cryo-EM) density maps, establishing how to evaluate the model accuracy and how to correct models in cases where they contain errors is becoming crucial to ensure the quality of the structural models deposited in the public database, the PDB. Here, a new protocol is presented for evaluating a protein model built from a cryo-EM map and applying local structure refinement in the case where the model has potential errors. Firstly, model evaluation is performed using a deep-learning-based model-local map assessment score, DAQ, that has recently been developed. The subsequent local refinement is performed by a modified AlphaFold2 procedure, in which a trimmed template model and a trimmed multiple sequence alignment are provided as input to control which structure regions to refine while leaving other more confident regions of the model intact. A benchmark study showed that this protocol, DAQ-refine, consistently improves low-quality regions of the initial models. Among 18 refined models generated for an initial structure, DAQ shows a high correlation with model quality and can identify the best accurate model for most of the tested cases. The improvements obtained by DAQ-refine were on average larger than other existing methods.


Assuntos
Proteínas , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Proteínas/química , Conformação Proteica
11.
Annu Rev Food Sci Technol ; 14: 203-224, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36623922

RESUMO

Structural bioinformatics analyzes protein structural models with the goal of uncovering molecular drivers of food functionality. This field aims to develop tools that can rapidly extract relevant information from protein databases as well as organize this information for researchers interested in studying protein functionality. Food bioinformaticians take advantage of millions of protein amino acid sequences and structures contained within these databases, extracting features such as surface hydrophobicity that are then used to model functionality, including solubility, thermostability, and emulsification. This work is aided by a protein structure-function relationship framework, in which bioinformatic properties are linked to physicochemical experimentation. Strong bioinformatic correlations exist for protein secondary structure, electrostatic potential, and surface hydrophobicity. Modeling changes in protein structures through molecular mechanics is an increasingly accessible field that will continue to propel food science research.


Assuntos
Biologia Computacional , Proteínas , Estrutura Molecular , Sequência de Aminoácidos , Alérgenos/química
12.
Front Mol Biosci ; 9: 935411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959463

RESUMO

An increasing number of protein complex structures are determined by cryo-electron microscopy (cryo-EM). When individual protein structures have been determined and are available, an important task in structure modeling is to fit the individual structures into the density map. Here, we designed a method that fits the atomic structures of proteins in cryo-EM maps of medium to low resolutions using Markov random fields, which allows probabilistic evaluation of fitted models. The accuracy of our method, MarkovFit, performed better than existing methods on datasets of 31 simulated cryo-EM maps of resolution 10 Å , nine experimentally determined cryo-EM maps of resolution less than 4 Å , and 28 experimentally determined cryo-EM maps of resolution 6 to 20 Å .

13.
Nat Methods ; 19(9): 1116-1125, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35953671

RESUMO

An increasing number of protein structures are being determined by cryogenic electron microscopy (cryo-EM). Although the resolution of determined cryo-EM density maps is improving in general, there are still many cases where amino acids of a protein are assigned with different levels of confidence. Here we developed a method that identifies potential misassignment of residues in the map, including residue shifts along an otherwise correct main-chain trace. The score, named DAQ, computes the likelihood that the local density corresponds to different amino acids, atoms, and secondary structures, estimated via deep learning, and assesses the consistency of the amino acid assignment in the protein structure model with that likelihood. When DAQ was applied to different versions of model structures in the Protein Data Bank that were derived from the same density maps, a clear improvement in the DAQ score was observed in the newer versions of the models. DAQ also found potential misassignment errors in a substantial number of deposited protein structure models built into cryo-EM maps.


Assuntos
Aminoácidos , Proteínas , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas/química
14.
Curr Protoc ; 2(7): e494, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35849043

RESUMO

An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) and stored in the Electron Microscopy Data Bank (EMDB). To interpret determined cryo-EM maps, several methods have been developed that model the tertiary structure of biomolecules, particularly proteins. Here we show how to use two such methods, VESPER and MAINMAST, which were developed in our group. VESPER is a method mainly for two purposes: fitting protein structure models into an EM map and aligning two EM maps locally or globally to capture their similarity. VESPER represents each EM map as a set of vectors pointing toward denser points. By considering matching the directions of vectors, in general, VESPER aligns maps better than conventional methods that only consider local densities of maps. MAINMAST is a de novo protein modeling tool designed for EM maps with resolution of 3-5 Å or better. MAINMAST builds a protein main chain directly from a density map by tracing dense points in an EM map and connecting them using a tree-graph structure. This article describes how to use these two tools using three illustrative modeling examples. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Protein structure model fitting using VESPER Alternate Protocol: Atomic model fitting using VESPER web server Basic Protocol 2: Protein de novo modeling using MAINMAST.


Assuntos
Proteínas , Microscopia Crioeletrônica/métodos , Microscopia Eletrônica , Modelos Moleculares , Modelos Estruturais , Proteínas/química
15.
Commun Biol ; 5(1): 316, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383281

RESUMO

Last year saw a breakthrough in protein structure prediction, where the AlphaFold2 method showed a substantial improvement in the modeling accuracy. Following the software release of AlphaFold2, predicted structures by AlphaFold2 for proteins in 21 species were made publicly available via the AlphaFold Database. Here, to facilitate structural analysis and application of AlphaFold2 models, we provide the infrastructure, 3D-AF-Surfer, which allows real-time structure-based search for the AlphaFold2 models. In 3D-AF-Surfer, structures are represented with 3D Zernike descriptors (3DZD), which is a rotationally invariant, mathematical representation of 3D shapes. We developed a neural network that takes 3DZDs of proteins as input and retrieves proteins of the same fold more accurately than direct comparison of 3DZDs. Using 3D-AF-Surfer, we report structure classifications of AlphaFold2 models and discuss the correlation between confidence levels of AlphaFold2 models and intrinsic disordered regions.


Assuntos
Proteínas , Software , Modelos Moleculares , Redes Neurais de Computação , Proteínas/metabolismo
16.
J Mol Graph Model ; 111: 108103, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34959149

RESUMO

Proteins are essential to nearly all cellular mechanism and the effectors of the cells activities. As such, they often interact through their surface with other proteins or other cellular ligands such as ions or organic molecules. The evolution generates plenty of different proteins, with unique abilities, but also proteins with related functions hence similar 3D surface properties (shape, physico-chemical properties, …). The protein surfaces are therefore of primary importance for their activity. In the present work, we assess the ability of different methods to detect such similarities based on the geometry of the protein surfaces (described as 3D meshes), using either their shape only, or their shape and the electrostatic potential (a biologically relevant property of proteins surface). Five different groups participated in this contest using the shape-only dataset, and one group extended its pre-existing method to handle the electrostatic potential. Our comparative study reveals both the ability of the methods to detect related proteins and their difficulties to distinguish between highly related proteins. Our study allows also to analyze the putative influence of electrostatic information in addition to the one of protein shapes alone. Finally, the discussion permits to expose the results with respect to ones obtained in the previous contests for the extended method. The source codes of each presented method have been made available online.


Assuntos
Proteínas , Ligantes , Modelos Moleculares , Domínios Proteicos , Eletricidade Estática
17.
J Chem Inf Model ; 61(7): 3516-3528, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34142833

RESUMO

Structural modeling of proteins from cryo-electron microscopy (cryo-EM) density maps is one of the challenging issues in structural biology. De novo modeling combined with flexible fitting refinement (FFR) has been widely used to build a structure of new proteins. In de novo prediction, artificial conformations containing local structural errors such as chirality errors, cis peptide bonds, and ring penetrations are frequently generated and cannot be easily removed in the subsequent FFR. Moreover, refinement can be significantly suppressed due to the low mobility of atoms inside the protein. To overcome these problems, we propose an efficient scheme for FFR, in which the local structural errors are fixed first, followed by FFR using an iterative simulated annealing (SA) molecular dynamics protocol with the united atom (UA) model in an implicit solvent model; we call this scheme "SAUA-FFR". The best model is selected from multiple flexible fitting runs with various biasing force constants to reduce overfitting. We apply our scheme to the decoys obtained from MAINMAST and demonstrate an improvement of the best model of eight selected proteins in terms of the root-mean-square deviation, MolProbity score, and RWplus score compared to the original scheme of MAINMAST. Fixing the local structural errors can enhance the formation of secondary structures, and the UA model enables progressive refinement compared to the all-atom model owing to its high mobility in the implicit solvent. The SAUA-FFR scheme realizes efficient and accurate protein structure modeling from medium-resolution maps with less overfitting.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Microscopia Crioeletrônica , Conformação Proteica
18.
Nat Commun ; 12(1): 2302, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863902

RESUMO

An increasing number of density maps of macromolecular structures, including proteins and DNA/RNA complexes, have been determined by cryo-electron microscopy (cryo-EM). Although lately maps at a near-atomic resolution are routinely reported, there are still substantial fractions of maps determined at intermediate or low resolutions, where extracting structure information is not trivial. Here, we report a new computational method, Emap2sec+, which identifies DNA or RNA as well as the secondary structures of proteins in cryo-EM maps of 5 to 10 Å resolution. Emap2sec+ employs the deep Residual convolutional neural network. Emap2sec+ assigns structural labels with associated probabilities at each voxel in a cryo-EM map, which will help structure modeling in an EM map. Emap2sec+ showed stable and high assignment accuracy for nucleotides in low resolution maps and improved performance for protein secondary structure assignments than its earlier version when tested on simulated and experimental maps.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Secundária de Proteína , Microscopia Crioeletrônica , DNA/ultraestrutura , RNA/ultraestrutura , Software
19.
Nat Commun ; 12(1): 2090, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828103

RESUMO

An increasing number of density maps of biological macromolecules have been determined by cryo-electron microscopy (cryo-EM) and stored in the public database, EMDB. To interpret the structural information contained in EM density maps, alignment of maps is an essential step for structure modeling, comparison of maps, and for database search. Here, we developed VESPER, which captures the similarity of underlying molecular structures embedded in density maps by taking local gradient directions into consideration. Compared to existing methods, VESPER achieved substantially more accurate global and local alignment of maps as well as database retrieval.


Assuntos
Microscopia Crioeletrônica/métodos , Bases de Dados Factuais , Modelos Estruturais , Software , Modelos Moleculares , Conformação Proteica , Proteínas/química
20.
Sci Rep ; 11(1): 7574, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828153

RESUMO

Protein 3D structure prediction has advanced significantly in recent years due to improving contact prediction accuracy. This improvement has been largely due to deep learning approaches that predict inter-residue contacts and, more recently, distances using multiple sequence alignments (MSAs). In this work we present AttentiveDist, a novel approach that uses different MSAs generated with different E-values in a single model to increase the co-evolutionary information provided to the model. To determine the importance of each MSA's feature at the inter-residue level, we added an attention layer to the deep neural network. We show that combining four MSAs of different E-value cutoffs improved the model prediction performance as compared to single E-value MSA features. A further improvement was observed when an attention layer was used and even more when additional prediction tasks of bond angle predictions were added. The improvement of distance predictions were successfully transferred to achieve better protein tertiary structure modeling.


Assuntos
Aprendizado Profundo , Proteínas/química , Alinhamento de Sequência/métodos , Caspases/química , Caspases/genética , Modelos Moleculares , Redes Neurais de Computação , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência/estatística & dados numéricos , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...