Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 1279945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875734

RESUMO

Security has become a critical issue for complex and expensive systems and day-to-day situations. In this regard, the analysis of surveillance cameras is a critical issue usually restricted to the number of people devoted to such a task, their knowledge and judgment. Nonetheless, different approaches have arisen to automate this task in recent years. These approaches are mainly based on machine learning and benefit from developing neural networks capable of extracting underlying information from input videos. Despite how competent those networks have proved to be, developers must face the challenging task of defining both the architecture and hyperparameters that allow such networks to work adequately and optimize the use of computational resources. In short, this work proposes a model that generates, through a genetic algorithm, neural networks for behavior classification within videos. Two types of neural networks evolved as part of this work, shallow and deep, which are structured on dense and 3D convolutional layers. Each network requires a particular type of input data: the evolution of the pose of people in the video and video sequences, respectively. Shallow neural networks use a direct encoding approach to map each part of the chromosome into a phenotype. In contrast, deep neural networks use indirect encoding, blueprints representing entire networks, and modules to depict layers and their connections. Our approach obtained relevant results when tested on the Kranok-NV dataset and evaluated with standard metrics used for similar classification tasks.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos
2.
Comput Intell Neurosci ; 2021: 8834324, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33564300

RESUMO

Hyperheuristics rise as powerful techniques that get good results in less computational time than exact methods like dynamic programming or branch and bound. These exact methods promise the global best solution, but with a high computational time. In this matter, hyperheuristics do not promise the global best solution, but they promise a good solution in a lot less computational time. On the contrary, fuzzy logic provides the tools to model complex problems in a more natural way. With this in mind, this paper proposes a fuzzy hyperheuristic approach, which is a combination of a fuzzy inference system with a selection hyperheuristic. The fuzzy system needs the optimization of its fuzzy rules due to the lack of expert knowledge; indeed, traditional hyperheuristics also need an optimization of their rules. The fuzzy rules are optimized by genetic algorithms, and for the rules of the traditional methods, we use particle swarm optimization. The genetic algorithm will also reduce the number of fuzzy rules, in order to find the best minimal fuzzy rules, whereas traditional methods already use very few rules. Experimental results show the advantage of using our approach instead of a traditional selection hyperheuristic in 3200 instances of the 0/1 knapsack problem.


Assuntos
Algoritmos , Lógica Fuzzy
3.
Entropy (Basel) ; 23(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374104

RESUMO

Deep interactive evolution (DeepIE) combines the capacity of interactive evolutionary computation (IEC) to capture a user's preference with the domain-specific robustness of a trained generative adversarial network (GAN) generator, allowing the user to control the GAN output through evolutionary exploration of the latent space. However, the traditional GAN latent space presents feature entanglement, which limits the practicability of possible applications of DeepIE. In this paper, we implement DeepIE within a style-based generator from a StyleGAN model trained on the WikiArt dataset and propose StyleIE, a variation of DeepIE that takes advantage of the secondary disentangled latent space in the style-based generator. We performed two AB/BA crossover user tests that compared the performance of DeepIE against StyleIE for art generation. Self-rated evaluations of the performance were collected through a questionnaire. Findings from the tests suggest that StyleIE and DeepIE perform equally in tasks with open-ended goals with relaxed constraints, but StyleIE performs better in close-ended and more constrained tasks.

4.
Comput Intell Neurosci ; 2018: 6103726, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681923

RESUMO

When solving constraint satisfaction problems (CSPs), it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differences among the orderings produced by some commonly used heuristics and the way bad first decisions affect the search cost. One of the most important findings of this work confirms the paramount importance of first decisions. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. We propose a simple method to improve early decisions of heuristics. By using it, performance of heuristics increases.


Assuntos
Heurística Computacional
5.
Comput Intell Neurosci ; 2016: 7349070, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26949383

RESUMO

Constraint satisfaction problems are of special interest for the artificial intelligence and operations research community due to their many applications. Although heuristics involved in solving these problems have largely been studied in the past, little is known about the relation between instances and the respective performance of the heuristics used to solve them. This paper focuses on both the exploration of the instance space to identify relations between instances and good performing heuristics and how to use such relations to improve the search. Firstly, the document describes a methodology to explore the instance space of constraint satisfaction problems and evaluate the corresponding performance of six variable ordering heuristics for such instances in order to find regions on the instance space where some heuristics outperform the others. Analyzing such regions favors the understanding of how these heuristics work and contribute to their improvement. Secondly, we use the information gathered from the first stage to predict the most suitable heuristic to use according to the features of the instance currently being solved. This approach proved to be competitive when compared against the heuristics applied in isolation on both randomly generated and structured instances of constraint satisfaction problems.


Assuntos
Inteligência Artificial , Heurística/fisiologia , Satisfação Pessoal , Algoritmos , Simulação por Computador , Humanos , Modelos Teóricos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA