Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 208: 112596, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968435

RESUMO

Estuaries are complex systems involving numerous biogeochemical gradients and processes that influence the behavior of trace metals. Lead (Pb), cadmium (Cd), and copper (Cu) speciation and partitioning were studied in the Gironde Estuary (SW France), using a multi-method approach in which data from innovative sensors and laboratory-based techniques were combined. For the first time in this system, the so-called dynamic fractions of the target metals (dissolved forms that are potentially bioavailable) were recorded on-board through voltammetry using unique antifouling gel-integrated microelectrode arrays (GIME) incorporated in a submersible sensing probe (TracMetal). Trace metals in the operationally defined dissolved <0.2 µm and <0.02 µm fractions, as well as complexed with suspended particles (collected after centrifugation) were quantified through sampling/laboratory-based techniques. High spatial resolution trace metal concentrations were monitored along the salinity gradient (S = 0.10 to S = 34.0) together with master bio-physicochemical parameters providing robust cruise-specific information on how well-known abiotic and biotic processes control the Gironde estuarine trace element partitioning, (i.e. conservative behavior, addition/removal). Combining conventional methods with GIME measurements showed: (i) the dominance of Cd dynamic species in the intra-estuarine total dissolved fraction (up to 90%), (ii) the importance of small colloids as trace metal carrier phases, desorbing and complexing dynamic fractions of Pb and Cu, and (iii) the potential influence of photo-redox processes remobilizing Pb under their dynamic forms (up to 80%). Data also suggest trace metal release/sorption by phytoplankton with an increase of dissolved Cu concentrations in the riverine branch, as well as Cu and Cd particulate concentrations showing higher levels towards productive coastal waters. This complete approach allowed to monitor key estuarine biogeochemical processes and highlighted the valuable use of the TracMetal to record subtle variations of potentially bioavailable dissolved metal fractions.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Metais/análise , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 42(19): 7146-51, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18939539

RESUMO

The objective of this study was to investigate the influence of root exudation of organic acid anions on the speciation of major and trace metal cations in the rhizosphere of Lupinus albus cluster roots. Plants were grown in rhizoboxes containing repacked weakly acidic loam. Bulk soil solutions and, during the lifetime of cluster roots, rhizosphere solutions were collected using micro suction cups. During organic acid anion exudation bursts, metals in the rhizosphere of cluster roots were strongly mobilized. The concentrations of dissolved organic carbon derived from soil organic matter increased parallel to organic acid anions. Speciation calculations revealed that, during exudation, Al, Ca, Mn, and Zn in the cluster root rhizosphere were mainly bound with citrate, while Cu and Pb were always strongly bound to soil-derived dissolved organic matter. Our results indicate that cluster root exudation led on one hand to direct mobilization and complexation of metals like Al, Fe, and Zn by citrate and on the other hand to the mobilization of soil organic matter which complexes and solubilizes Cu and Pb.


Assuntos
Lupinus/metabolismo , Metais/metabolismo , Raízes de Plantas/metabolismo , Carbono/metabolismo , Citratos/metabolismo , Concentração de Íons de Hidrogênio , Fenóis/metabolismo , Solo , Solubilidade , Soluções , Espectrofotometria Ultravioleta , Extratos de Tecidos
3.
Anal Chem ; 73(10): 2273-81, 2001 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11393852

RESUMO

The application of a novel voltammetric probe, based on an individually addressable gel-integrated microelectrode array (IA-GIME), for real-time, high-spatial resolution concentration profile measurements at interfaces is described. Reliability and validity of steep metal concentration gradients obtained with this novel system have been demonstrated by performing systematic tests at well-controlled liquid-liquid and liquid-solid interfaces. The liquid-liquid interface was formed by two layers of aqueous solutions with different components; only one layer contained trace metal ions (Pb(II) and Cd(II)); the individually addressable microelectrode array was placed at the interface of the liquid-liquid system; the concentration profiles were recorded as function of time; and the effective diffusion coefficients were calculated. The liquid-"solid" interface was formed from an aqueous solution layer overlying a bed of silica particles saturated with an aqueous solution. The sensor array has been used to monitor the diffusion processes of Tl(I) or Pb(II) from the liquid phase to the "solid" phase. The influences of porosity, geometry of the porous media, and complexation between metal ion and silica, on the diffusion processes, have been studied. All these results show that correct diffusion profiles of metal ions at interfaces can be obtained with 200-microm resolution with the IA-GIME. They also demonstrate that, for measurements in "solid" phase, the aforementioned factors must be considered carefully for correct calibration of any electrodes and the gel-integrated microelectrodes are unique tools to enable calibration of the sensors with synthetic solutions.

4.
Anal Chem ; 72(1): 161-71, 2000 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-10655649

RESUMO

The paper reports a new approach based on a gel-integrated Hg-plated-Ir-based microelectrode array (GIME), for measuring Cu, Pb, Cd, and Zn speciation in natural waters. This paper focuses on the quantitative discrimination between mobile and colloidal metal species (size limit of a few nanometers), for which most classical separation techniques present severe drawbacks. Previous papers have shown qualitatively that GIME combined with square wave anodic stripping voltammetry (SWASV) has the basic characteristics required to discriminate between these two fractions directly on the unperturbed sample. In addition, because of the large sensitivity provided by GIME, complexation parameters (equilibrium constants and site concentrations) can be determined in little-perturbed samples, particularly without metal addition or with small addition compared with natural concentrations. The advantages of this procedure are exemplified and the possible artifacts occurring when titrating the sample with metals, in particular intermetallic compound formation and other problems, are discussed in detail. The present paper shows that the characteristics of GIME make it a unique tool to get quantitative information on metal speciation at nanomolar or even subnanomolar levels, with only minor sample handling.


Assuntos
Água Doce/análise , Metais Pesados/análise , Cádmio/análise , Cobre/análise , Eletroquímica/métodos , Irídio/química , Chumbo/análise , Mercúrio/química , Microeletrodos , Sefarose/química , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA