Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(13): 3205-3222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580889

RESUMO

Routine analysis of inorganic analytes in whole water samples from rivers (unfiltered river water) is rarely reported in scientific publications. However, this sample type is valuable and often used in long-term monitoring, regulation, and catchment element budgets, as it includes the dissolved, colloidal, and particulate fraction in one sample type. Preservation measures are not needed and solid-liquid partitioning can be disregarded, which simplifies automated sampling and storage procedures. In this study, we provide several digestion protocols for whole water samples from rivers and the subsequent multi-element analysis of 67 major, minor, and trace elements: Li, Be, B, Na, Mg, Al, Si, P, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ru, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, U. In the absence of whole water reference materials for inorganic analytes, we introduce simulated whole water samples by suspending sediment reference materials as quality control measures. The applicability for improved routine water quality monitoring was successfully tested on samples from different rivers revealing variations of the element fingerprints over time.

2.
Anal Bioanal Chem ; 416(15): 3519-3532, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38656365

RESUMO

The masking of specific effects in in vitro assays by cytotoxicity is a commonly known phenomenon. This may result in a partial or complete loss of effect signals. For common in vitro assays, approaches for identifying and quantifying cytotoxic masking are partly available. However, a quantification of cytotoxicity-affected signals is not possible. As an alternative, planar bioassays that combine high-performance thin layer chromatography with in vitro assays, such as the planar yeast estrogen screen (p-YES), might allow for a quantification of cytotoxically affected signals. Affected signals form a typical ring structure with a supressed or completely lacking centre that results in a double peak chromatogram. This study investigates whether these double peaks can be used for fitting a peak function to extrapolate the theoretical, unaffected signals. The precision of the modelling was evaluated for four individual peak functions, using 42 ideal, undistorted peaks from estrogenic model compounds in the p-YES. Modelled ED50-values from bisphenol A (BPA) experiments with cytotoxically disturbed signals were 13 times higher than for the apparent data without compensation for cytotoxicity (320 ± 63 ng versus 24 ± 17 ng). This finding has a high relevance for the modelling of mixture effects according to concentration addition that requires unaffected, complete dose-response relationships. Finally, we applied the approach to results of a p-YES assay on leachate samples of an elastomer material used in water engineering. In summary, the fitting approach enables the quantitative evaluation of cytotoxically affected signals in planar in vitro assays and also has applications for other fields of chemical analysis like distorted chromatography signals.


Assuntos
Bioensaio , Bioensaio/métodos , Cromatografia em Camada Fina/métodos , Fenóis/toxicidade , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Estrogênios/análise , Estrogênios/toxicidade
3.
Water Res ; 256: 121596, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38685172

RESUMO

The proton-pump inhibitor pantoprazole (PPZ) is one of the most consumed pharmaceuticals worldwide. Despite its high usage, reported PPZ concentrations in environmental water samples are comparatively low, which can be explained by the extensive metabolism of PPZ in the human body. Since most previous studies did not consider human PPZ metabolites it can be assumed that the current environmental exposure associated with the application of PPZ is substantially underestimated. In our study, 4'-O-demethyl-PPZ sulfide (M1) was identified as the predominant PPZ metabolite by analyzing urine of a PPZ consumer as well as the influent and effluent of a wastewater treatment plant (WWTP) using liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS). M1 was found to be ubiquitously present in WWTP effluents (max. concentration: 3 000 ng/L) and surface waters in Germany. On average, the surface water concentrations of M1 were approximately 30 times higher than those of the parent compound PPZ. Laboratory scale experiments demonstrated that activated carbon can considerably adsorb M1 und thus improve its removal during wastewater and drinking water treatment. Laboratory ozonation experiments showed a fast oxidation of M1, accompanied by the formation of several ozonation products. Certain ozonation products (identities confirmed via synthesized reference standards) were also detected in water samples collected after ozonation in a full-scale WWTP. Overall lower signal intensities were observed in the effluents of a sand filter and biologically active granular activated carbon filter, suggesting that the compounds were significantly removed during these post-ozonation treatment stages.


Assuntos
Monitoramento Ambiental , Pantoprazol , Águas Residuárias , Poluentes Químicos da Água , Medição de Risco , Águas Residuárias/química , Humanos , 2-Piridinilmetilsulfinilbenzimidazóis , Cromatografia Líquida , Purificação da Água , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA