Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Hum Genet ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658779

RESUMO

Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.

3.
Eur J Hum Genet ; 31(10): 1185-1189, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37402954

RESUMO

Germline mutations in MBD4, which, like MUTYH and NTHL1, encodes a glycosylase of the DNA based excision repair system, cause an autosomal recessive syndrome characterised by increased risk of acute myeloid leukaemia, gastrointestinal polyposis, colorectal cancer (CRC) and, to a lesser extent, uveal melanoma and schwannomas. To better define the phenotypic spectrum and tumour molecular features associated with biallelic MBD4-associated cancer predisposition, and study if heterozygous variants are associated with gastrointestinal tumour predisposition, we evaluated germline MBD4 status in 728 patients with CRC, polyposis, and other suggestive phenotypes (TCGA and in-house cohorts). Eight CRC patients carried rare homozygous or heterozygous germline variants in MBD4. The information gathered on mode of inheritance, variant nature, functional effect of the variant, and tumour mutational characteristics suggested that none of the patients included in the study had an MBD4-associated hereditary syndrome and that the heterozygous variants identified were not associated with the disease.


Assuntos
Neoplasias Colorretais , Predisposição Genética para Doença , Humanos , Neoplasias Colorretais/genética , Mutação , Fenótipo , Mutação em Linhagem Germinativa , Endodesoxirribonucleases/genética
4.
Biogerontology ; 23(4): 499-514, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35851632

RESUMO

Increased frequency of DNA double strand breaks (DSBs) with aging suggests an age-associated decline in DSB repair efficiency, which is also influenced by the epigenetic landscape. H4 acetylation at lysine 16 (H4K16Ac) has been related to DSB repair since deacetylation of this mark is required for efficient 53BP1 recruitment to DSBs. Although age-associated changes in H4K16Ac levels have been studied, their contribution to age-related DSB accumulation remains unknown. In vitro aged Human Dermal Fibroblasts (HDFs) display lower levels of H4K16A that correlate with reduced recruitment of 53BP1 to basal DSBs. Following DNA damage induction, early passage (EP) cells suffered from a transient H4K16 deacetylation that allowed proper 53BP1 recruitment to DSBs. In contrast, to reach this specific and optimum level, aged cells responded by increasing their overall lower H4K16Ac levels. Induced hyperacetylation of late passage (LP) cells using trichostatin A increased H4K16Ac levels but did not ameliorate 53BP1 recruitment. Instead, deacetylation induced by MOF silencing reduced H4K16Ac levels and compromised 53BP1 recruitment in both EP and LP cells. Age-associated decrease of H4K16Ac levels contributes to the repair defect displayed by in vitro aged cells. H4K16Ac responds to DNA damage in order to reach a specific, optimum level that allows proper 53BP1 recruitment. This response may be compromised with age, as LP cells depart from lower H4K16Ac levels. Variations in H4K16Ac following the activation of the DNA damage response and aging point at this histone mark as a key mediator between DNA repair and age-associated chromatin alterations.


Assuntos
Quebras de DNA de Cadeia Dupla , Histonas , Acetilação , Idoso , Reparo do DNA , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
5.
Cancers (Basel) ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35158968

RESUMO

The ALFRED (Allelic Loss Featuring Rare Damaging) in silico method was developed to identify cancer predisposition genes through the identification of somatic second hits. By applying ALFRED to ~10,000 tumor exomes, 49 candidate genes were identified. We aimed to assess the causal association of the identified genes with colorectal cancer (CRC) predisposition. Of the 49 genes, NSD1, HDAC10, KRT24, ACACA and TP63 were selected based on specific criteria relevant for hereditary CRC genes. Gene sequencing was performed in 736 patients with familial/early onset CRC or polyposis without germline pathogenic variants in known genes. Twelve (predicted) damaging variants in 18 patients were identified. A gene-based burden test in 1596 familial/early-onset CRC patients, 271 polyposis patients, 543 TCGA CRC patients and >134,000 controls (gnomAD, non-cancer), revealed no clear association with CRC for any of the studied genes. Nevertheless, (non-significant) over-representation of disruptive variants in NSD1, KRT24 and ACACA in CRC patients compared to controls was observed. A somatic second hit was identified in one of 20 tumors tested, corresponding to an NSD1 carrier. In conclusion, most genes identified through the ALFRED in silico method were not relevant for CRC predisposition, although a possible association was detected for NSD1, KRT24 and ACACA.

6.
Cells ; 10(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806975

RESUMO

Early-onset colorectal cancer (EOCRC), defined as that diagnosed before the age of 50, accounts for 10-12% of all new colorectal cancer (CRC) diagnoses. Epidemiological data indicate that EOCRC incidence is increasing, despite the observed heterogeneity among countries. Although the cause for such increase remains obscure, ≈13% (range: 9-26%) of EOCRC patients carry pathogenic germline variants in known cancer predisposition genes, including 2.5% of patients with germline pathogenic variants in hereditary cancer genes traditionally not associated with CRC predisposition. Approximately 28% of EOCRC patients have family history of the disease. This article recapitulates current evidence on the inherited syndromes that predispose to EOCRC and its familial component. The evidence gathered support that all patients diagnosed with an EOCRC should be referred to a specialized genetic counseling service and offered somatic and germline pancancer multigene panel testing. The identification of a germline pathogenic variant in a known hereditary cancer gene has relevant implications for the clinical management of the patient and his/her relatives, and it may guide surgical and therapeutic decisions. The relative high prevalence of hereditary cancer syndromes and familial component among EOCRC patients supports further research that helps understand the genetic background, either monogenic or polygenic, behind this increasingly common disease.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Padrões de Herança/genética , Idade de Início , Alelos , Família , Aconselhamento Genético , Predisposição Genética para Doença , Humanos
7.
Gut ; 70(6): 1139-1146, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32998877

RESUMO

OBJECTIVE: Germline TP53 pathogenic (P) variants cause Li-Fraumeni syndrome (LFS), an aggressive multitumor-predisposing condition. Due to the implementation of multigene panel testing, TP53 variants have been detected in individuals without LFS suspicion, for example, patients with colorectal cancer (CRC). We aimed to decipher whether these findings are the result of detecting the background population prevalence or the aetiological basis of CRC. DESIGN: We analysed TP53 in 473 familial/early-onset CRC cases and evaluated the results together with five additional studies performed in patients with CRC (total n=6200). Control population and LFS data were obtained from Genome Aggregation Database (gnomAD V.2.1.1) and the International Agency for Research on Cancer (IARC) TP53 database, respectively. All variants were reclassified according to the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP), following the ClinGen TP53 Expert Panel specifications. RESULTS: P or likely pathogenic (LP) variants were identified in 0.05% of controls (n=27/59 095) and 0.26% of patients with CRC (n=16/6200) (p<0.0001) (OR=5.7, 95% CI 2.8 to 10.9), none of whom fulfilled the clinical criteria established for TP53 testing. This association was still detected when patients with CRC diagnosed at more advanced ages (>50 and>60 years) were excluded from the analysis to minimise the inclusion of variants caused by clonal haematopoiesis. Loss-of-function and missense variants were strongly associated with CRC as compared with controls (OR=25.44, 95% CI 6.10 to 149.03, for loss of function and splice-site alleles, and OR=3.58, 95% CI 1.46 to 7.98, for missense P or LP variants). CONCLUSION: TP53 P variants should not be unequivocally associated with LFS. Prospective follow-up of carriers of germline TP53 P variants in the absence of LFS phenotypes will define how surveillance and clinical management of these individuals should be performed.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença/genética , Proteína Supressora de Tumor p53/genética , Adulto , Alelos , Estudos de Casos e Controles , Neoplasias Colorretais/terapia , Genômica , Genótipo , Mutação em Linhagem Germinativa , Humanos , Síndrome de Li-Fraumeni/genética , Mutação com Perda de Função , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Fenótipo , Conduta Expectante
8.
J Vis Exp ; (163)2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-33044448

RESUMO

Tumorigenesis is a multi-step process in which cells acquire capabilities that allow their growth, survival, and dissemination under hostile conditions. Different tests seek to identify and quantify these hallmarks of cancerous cells; however, they often focus on a single aspect of cellular transformation and, in fact, multiple tests are required for their proper characterization. The purpose of this work is to provide researchers with a set of tools to assess cellular transformation in vitro from a broad perspective, thereby making it possible to draw sound conclusions. A sustained proliferative signaling activation is the major feature of tumoral tissues and can be easily monitored under in vitro conditions by calculating the number of population doublings achieved over time. Besides, the growth of cells in 3D cultures allows their interaction with surrounding cells, resembling what occurs in vivo. This enables the evaluation of cellular aggregation and, together with immunofluorescent labeling of distinctive cellular markers, to obtain information on another relevant feature of tumoral transformation: the loss of proper organization. Another remarkable characteristic of transformed cells is their capacity to grow without attachment to other cells and to the extracellular matrix, which can be evaluated with the anchorage assay. Detailed experimental procedures to evaluate cell growth rate, to perform immunofluorescent labeling of cell lineage markers in 3D cultures, and to test anchorage-independent cell growth in soft agar are provided. These methodologies are optimized for Breast Primary Epithelial Cells (BPEC) due to its relevance in breast cancer; however, procedures can be applied to other cell types after some adjustments.


Assuntos
Mama/patologia , Transformação Celular Neoplásica/patologia , Células Epiteliais/patologia , Animais , Membrana Basal/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Técnicas de Cultura de Células , Polaridade Celular , Proliferação de Células , Células Cultivadas , Feminino , Imunofluorescência , Humanos , Processamento de Imagem Assistida por Computador , Modelos Biológicos , Transdução de Sinais , Software
9.
J Clin Med ; 9(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585810

RESUMO

In the past two decades, multiple studies have been undertaken to elucidate the genetic cause of the predisposition to mismatch repair (MMR)-proficient nonpolyposis colorectal cancer (CRC). Here, we present the proposed candidate genes according to their involvement in specific pathways considered relevant in hereditary CRC and/or colorectal carcinogenesis. To date, only pathogenic variants in RPS20 may be convincedly linked to hereditary CRC. Nevertheless, accumulated evidence supports the involvement in the CRC predisposition of other genes, including MRE11, BARD1, POT1, BUB1B, POLE2, BRF1, IL12RB1, PTPN12, or the epigenetic alteration of PTPRJ. The contribution of the identified candidate genes to familial/early onset MMR-proficient nonpolyposis CRC, if any, is extremely small, suggesting that other factors, such as the accumulation of low risk CRC alleles, shared environmental exposures, and/or gene-environmental interactions, may explain the missing heritability in CRC.

10.
Hum Mutat ; 41(9): 1563-1576, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449991

RESUMO

Genome-wide approaches applied for the identification of new hereditary colorectal cancer (CRC) genes, identified several potential causal genes, including RPS20, IL12RB1, LIMK2, POLE2, MRE11, POT1, FAN1, WIF1, HNRNPA0, SEMA4A, FOCAD, PTPN12, LRP6, POLQ, BLM, MCM9, and the epigenetic inactivation of PTPRJ. Here we attempted to validate the association between variants in these genes and nonpolyposis CRC by performing a mutational screening of the genes and PTPRJ promoter methylation analysis in 473 familial/early-onset CRC cases, a systematic review of the published cases, and assessment of allele frequencies in control population. In the studied cohort, 24 (5%) carriers of (predicted) deleterious variants in the studied genes and no constitutional PTPRJ epimutations were identified. Assessment of allele frequencies in controls compared with familial/early-onset patients with CRC showed association with increased nonpolyposis CRC risk of disruptive variants in RPS20, IL12RB1, POLE2, MRE11 and POT1, and of FAN1 c.149T>G (p.Met50Arg). Lack of association was demonstrated for LIMK2, PTPN12, LRP6, PTPRJ, POLQ, BLM, MCM9 and FOCAD variants. Additional studies are required to provide conclusive evidence for SEMA4A, WIF1, HNRNPA0 c.-110G>C, and FOCAD large deletions.


Assuntos
Neoplasias Colorretais/genética , Predisposição Genética para Doença , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Metilação de DNA , Análise Mutacional de DNA , Detecção Precoce de Câncer , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Adulto Jovem
11.
Sci Rep ; 9(1): 13970, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31562345

RESUMO

Aging is associated with changes in gene expression levels that affect cellular functions and predispose to age-related diseases. The use of candidate genes whose expression remains stable during aging is required to correctly address the age-associated variations in expression levels. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) has become a powerful approach for sensitive gene expression analysis. Reliable RT-qPCR assays rely on the normalisation of the results to stable reference genes. Taken these data together, here we evaluated the expression stability of eight frequently used reference genes in three aging models: oncogene-induced senescence (OIS), in vitro and in vivo aging. Using NormFinder and geNorm algorithms, we identified that the most stable reference gene pairs were PUM1 and TBP in OIS, GUSB and PUM1 for in vitro aging and GUSB and OAZ1 for in vivo aging. To validate these candidates, we used them to normalise the expression data of CDKN1A, APOD and TFRC genes, whose expression is known to be affected during OIS, in vitro and in vivo aging. This study demonstrates that accurate normalisation of RT-qPCR data is crucial in aging research and provides a specific subset of stable reference genes for future aging studies.


Assuntos
Envelhecimento/genética , Genes Essenciais , Reação em Cadeia da Polimerase em Tempo Real/normas , Algoritmos , Perfilação da Expressão Gênica/métodos , Humanos , Software
12.
Hum Mutat ; 40(11): 1910-1923, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31243857

RESUMO

Technological advances have allowed the identification of new adenomatous and serrated polyposis genes, and of several candidate genes that require additional supporting evidence of causality. Through an exhaustive literature review and mutational screening of 177 unrelated polyposis patients, we assessed the involvement of MCM9, FOCAD, POLQ, and RNF43 in the predisposition to (nonserrated) colonic polyposis, as well as the prevalence of NTHL1 and MSH3 mutations among genetically unexplained polyposis patients. Our results, together with previously reported data and mutation frequency in controls, indicate that: MCM9 and POLQ mutations are not associated with polyposis; germline RNF43 mutations, with a prevalence of 1.5-2.5% among serrated polyposis patients, do not cause nonserrated polyposis; MSH3 biallelic mutations are highly infrequent among European polyposis patients, and the prevalence of NTHL1 biallelic mutations among unexplained polyposes is ~2%. Although nonsignificant, FOCAD predicted deleterious variants are overrepresented in polyposis patients compared to controls, warranting larger studies to provide definite evidence in favor or against their causal association with polyposis predisposition.


Assuntos
Polipose Adenomatosa do Colo/epidemiologia , Polipose Adenomatosa do Colo/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Predisposição Genética para Doença , Proteína 3 Homóloga a MutS/genética , Mutação , Polipose Adenomatosa do Colo/diagnóstico , Biomarcadores , DNA Polimerase Dirigida por DNA/genética , Estudos de Associação Genética , Humanos , Variantes Farmacogenômicos , Prevalência , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , DNA Polimerase teta
13.
Sci Rep ; 9(1): 9020, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227763

RESUMO

The cancer-predisposing syndrome caused by biallelic mutations in NTHL1 may not be a solely colorectal cancer (CRC) and polyposis syndrome but rather a multi-tumor recessive disease. The presence of ≤10 adenomas in several mutation carriers suggests a possible causal role of NTHL1 in hereditary or early-onset nonpolyposis CRC. The involvement of NTHL1 in serrated/hyperplastic polyposis remains unexplored. The aim of our study is to elucidate the role of NTHL1 in the predisposition to personal or familial history of multiple tumor types, familial/early-onset nonpolyposis CRC, and serrated polyposis. NTHL1 mutational screening was performed in 312 cancer patients with personal or family history of multiple tumor types, 488 with hereditary nonpolyposis CRC, and 96 with serrated/hyperplastic polyposis. While no biallelic mutation carriers were identified in patients with personal and/or family history of multiple tumor types or with serrated polyposis, one was identified among the 488 nonpolyposis CRC patients. The carrier of c.268C>T (p.Q90*) and 550-1G>A was diagnosed with CRC and meningioma at ages 37 and 45 respectively, being reclassified as attenuated adenomatous polyposis after the cumulative detection of 26 adenomas. Our findings suggest that biallelic mutations in NTHL1 rarely cause CRC, a personal/familial multi-tumor history, or serrated polyposis, in absence of adenomas.


Assuntos
Adenoma/genética , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Predisposição Genética para Doença/genética , Mutação , Adenoma/diagnóstico , Polipose Adenomatosa do Colo/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
14.
Mol Cancer Res ; 17(4): 937-948, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30651374

RESUMO

Radiation is used in multiple procedures as a therapeutic and diagnostic tool. However, ionizing radiation can induce mutations in the DNA of irradiated cells, which can promote tumorigenesis. As malignant transformation is a process that takes many years, there are intermediate stages of cells that have initiated the process but have not yet evolved into cancer. The study here aimed to investigate the effect of ionizing radiation on normal and partially transformed human mammary epithelial cells. Breast primary epithelial cells were derived from normal breast tissue from two different donors and modified by transduction with the SV40 small and large T antigen and hTERT genes to obtain partially transformed cells and also with HRAS to completely and experimentally transform them. After exposure to different doses of ionizing radiation, oncogenic features were analyzed by means of an anchorage-independent growth assay and 3D cell culture. The addition of radiation exposure resulted in an increase in the number and size of colonies formed in each of the conditions analyzed and in the reduction of the capacity of partially transformed cells to form properly polarized 3D structures. Moreover, partially transformed cells require lower doses of radiation than healthy cells to enhance anchorage-independent growth capacity. Although cells from different donors have a different degree of sensitivity in the response to radiation, a higher sensitivity to the radiation-induced cell transformation process was observed in those cells that had already initiated the oncogenic process, which require higher doses of radiation to complete the transformation process. IMPLICATIONS: Individuals carrying accumulation of genetic alterations may have an increased susceptibility to radiation-induced neoplastic transformation.


Assuntos
Neoplasias da Mama/patologia , Mama/efeitos da radiação , Transformação Celular Neoplásica/efeitos da radiação , Lesões Pré-Cancerosas/patologia , Mama/citologia , Mama/patologia , Neoplasias da Mama/etiologia , Células Epiteliais/citologia , Células Epiteliais/patologia , Células Epiteliais/efeitos da radiação , Feminino , Humanos , Neoplasias Induzidas por Radiação/patologia
15.
Methods Mol Biol ; 1769: 197-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29564826

RESUMO

The physical isolation of chromosomes within micronuclei offers an attractive mechanistic explanation for the local DNA fragmentation and clustered genome rearrangements that characterize chromothripsis. Localized shattering of the chromatin confined in micronuclei can be a consequence of defects in micronuclei basic general functions, such as DNA replication and repair. The detection of DNA repair and replication defects in micronuclei is described here, as well as the analysis of chromosome breakage and inaccurate reassembly of broken segments in the daughter cells, as indirect methods to detect chromothripsis.


Assuntos
Cromotripsia , Replicação do DNA , Instabilidade Genômica , Micronúcleos com Defeito Cromossômico , Aberrações Cromossômicas , Fragmentação do DNA , Reparo do DNA , Rearranjo Gênico , Histonas/metabolismo , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
17.
Radiat Res ; 186(6): 549-558, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27841703

RESUMO

High- and low-dose X rays are used in medicine as therapeutic and diagnostic tools, respectively. While the cellular response to high-dose radiation is well known, studies on the effects of low-dose radiation and its ability to trigger a proper DNA damage response have had contradictory results. The functions of many signaling and effector proteins of the DNA damage response (DDR) have been described, and are attributed to well-known DDR pathways. However, there has been little known about the contribution of long noncoding RNAs (lncRNAs) to DDR, although there is recent evidence that lncRNAs may be associated with almost all biological functions, including DDR. In this work, we investigated the participation of lncRNAs in the response to different X-ray doses. By microarray analysis, we observed that in human breast epithelial cells, distinct sets of coding and noncoding transcripts are differentially regulated after moderate- and high-dose irradiation compared to those regulated after low-dose irradiation. While the modulated coding and noncoding genes at low doses relate to cell signaling pathways, those affected by moderate and high doses are mostly enriched for cell cycle regulation and apoptotic pathways. Quantification using qPCR of the lncRNAs identified by microarrays allowed the validation of 75% of those regulated at the higher doses. These results indicate that lncRNA expression is regulated by ionizing radiation and that this expression is dose dependent.


Assuntos
RNA Longo não Codificante/genética , Linhagem Celular , Relação Dose-Resposta à Radiação , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/efeitos da radiação , Raios X/efeitos adversos
18.
Arch Toxicol ; 90(11): 2657-2667, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27542123

RESUMO

Micronuclei (MN) have generally been considered a consequence of DNA damage and, as such, have been used as markers of exposure to genotoxic agents. However, advances in DNA sequencing methods and the development of high-resolution microscopy with which to analyse chromosome dynamics in live cells have been fundamental in building a more refined view of the existing links between DNA damage and micronuclei. Here, we review recent progress indicating that defects of micronuclei affect basic nuclear functions, such as DNA repair and replication, generating massive damage in the chromatin of the MN. In addition, the physical isolation of chromosomes within MN offers an attractive mechanistic explanation for chromothripsis, a massive local DNA fragmentation that produces complex rearrangements restricted to only one or a few chromosomes. When micronuclear chromatin is reincorporated in the daughter cell nuclei, the under-replicated, damaged or rearranged micronuclear chromatin might contribute to genome instability. The traditional conception of micronuclei has been overturned, as they have evolved from passive indicators of DNA damage to active players in the formation of DNA lesions, thus unravelling previously unforeseen roles of micronuclei in the origins of chromosome instability.


Assuntos
Núcleo Celular/efeitos dos fármacos , Cromotripsia/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Modelos Biológicos , Mutagênicos/toxicidade , Animais , Biomarcadores/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia
19.
Biomed Res Int ; 2016: 8279560, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27057549

RESUMO

In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs) and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated) defective cell line, as Ataxia-Telangiectasia (AT) cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70-85% of the AT viable cells (TUNEL-negative) carried ≥ 10 γH2AX foci/cell, while only 12-27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥ 10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.


Assuntos
Apoptose/genética , Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Linfócitos/citologia , Ciclo Celular , Linhagem Celular , Humanos , Marcação In Situ das Extremidades Cortadas
20.
Breast Cancer Res ; 18(1): 7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758019

RESUMO

Breast cancer is the most common malignant disease in women, but some basic questions remain in breast cancer biology. To answer these, several cell models were developed. Recently, the use of improved cell-culture conditions has enabled the development of a new primary cell model with certain luminal characteristics. This model is relevant because, after the introduction of a specific set of genetic elements, the transformed cells yielded tumors resembling human adenocarcinomas in mice. The use of improved cell-culture conditions supporting the growth of these breast primary epithelial cells was expected to delay or eliminate stress-induced senescence and lead to the propagation of normal cells. However, no studies have been carried out to investigate these points. Propagation of breast primary epithelial cells was performed in WIT medium on Primaria plates. Immunofluorescence, western blot and qRT-PCR were used to detect molecular markers, and to determine the integrity of DNA damage-response pathways. Promoter methylation of p16 (INK4a) was assessed by pyrosequencing. In order to obtain a dynamic picture of chromosome instability over time in culture, we applied FISH methodologies. To better link chromosome instability with excessive telomere attrition, we introduced the telomerase reverse transcriptase human gene using a lentiviral vector. We report here that breast primary epithelial cells propagated in vitro with WIT medium on Primaria plates express some luminal characteristics, but not a complete luminal lineage phenotype. They undergo a p16-dependent stress-induced senescence (stasis), and the cells that escape stasis finally enter a crisis state with rampant chromosome instability. Chromosome instability in these cells is driven by excessive telomere attrition, as distributions of chromosomes involved in aberrations correlate with the profiles of telomere signal-free ends. Importantly, ectopic expression of the human TERT gene rescued their chromosomal instability phenotype. Essentially, our data show that contrary to what was previously suggested, improved culture conditions to propagate in vitro mammary epithelial cells with some luminal characteristics do not prevent stress-induced senescence. This barrier is overcome by spontaneous methylation of the p16 (INK4a) promoter, allowing the proliferation of cells with telomere dysfunction and ensuing chromosome instability.


Assuntos
Neoplasias da Mama/genética , Instabilidade Cromossômica/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Metilação de DNA/genética , Telomerase/genética , Animais , Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA/genética , Células Epiteliais/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...