Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 30(3): 103574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36816729

RESUMO

Date palm (Phœnix dactylifera L.) like other crop species in the arid Mediterranean region is being threatened by genetic erosion and climate change. Therefore, the understanding and assessment of the diversity extent of this species is a primary requisite for preserving these crop resources. This study was designed to quantify the potential of Tunisian male date palms using a set of agro-morphological characteristics i.e. flowering traits, inflorescence morphology and pollen quality. The flowering time traits exhibited a trend of precocious phenotype at emergence spathe trait and the dominance of the full-season phenotype at the opening date. At inflorescence morphology, all observed traits expressed wide ranges which reflected the broad variability of the evaluated male genotypes. Significant difference was recorded for the majority of the examined traits with a high significant variation in the tree quantitative traits: Spathe Total Length, Spathe Maximum Width and Length to the brunched part. Pollen viability ranged from 51.10% to 98.75% while the germination rate was between 0.90% and 70.50%. Our phenotypic investigation has allowed the identification of males with desirable agronomic traits which have been genotyped using 18 nuclear SSR markers and a chloroplast minisatellite for preservation and effective utilization purposes.

2.
Nat Plants ; 9(2): 219-227, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702932

RESUMO

The olive tree (Olea europaea L.) is one of the species best adapted to a Mediterranean-type climate1-8. Nonetheless, the Mediterranean Basin is deemed to be a climate change 'hotspot' by the Intergovernmental Panel on Climate Change9,10 because future model projections suggest considerable warming and drying11,12. Within this context, new environmental challenges will arise in the coming decades, which will both weaken and threaten olive-growing areas, leading to a loss of productivity and changes in fruit and oil quality13-15. Olive growing, a core of the Mediterranean economy, might soon be under stress. To probe the link between climate and olive trees, we here report 5,400 years of olive tree dynamics from the ancient city of Tyre, Lebanon. We show that optimal fruiting scales closely with temperature. Present-day and palaeo data define an optimal annual average temperature of 16.9 ± 0.3 °C for olive flowering that has existed at least since the Neolithic period. According to our projections, during the second half of the twenty-first century, temperature increases in Lebanon will have detrimental consequences on olive tree growth and olive oil production, especially in the country's southern regions, which will become too hot for optimal flowering and fruiting. These data provide a template to understand present and future thresholds of olive production under climate change.


Assuntos
Adaptação Fisiológica , Mudança Climática , Azeite de Oliva , Temperatura
3.
Sci Rep ; 11(1): 21381, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725430

RESUMO

The pip, as the most common grapevine archaeological remain, is extensively used to document past viticulture dynamics. This paper uses state of the art morphological analyses to analyse the largest reference collection of modern pips to date, representative of the present-day diversity of the domesticated grapevine from Western Eurasia. We tested for a costructure between the form of the modern pips and the: destination use (table/wine), geographical origins, and populational labels obtained through two molecular approaches. Significant structuring is demonstrated for each of these cofactors and for the first time it is possible to infer properties of varieties without going through the parallel with modern varieties. These results provide a unique tool that can be applied to archaeological pips in order to reconstruct the spatio-temporal dynamics of grape diversity on a large scale and to better understand viticulture history. The models obtained were then used to infer the affiliations with archaeobotanical remains recovered in Mas de Vignoles XIV (Nîmes, France). The results show a twofold shift between the Late Iron Age and the Middle Ages, from table to wine grape varieties and from eastern to western origins which correlates with previous palaeogenomic results.

4.
Front Plant Sci ; 12: 663721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276726

RESUMO

In the current context of global change, the increasing frequency and the length of drought periods are testing the resistance capacities of plants of dry habitats. However, although the adaptation of plants to drought has been widely studied, the anatomical features of wood influencing the functional responses of plants to drought are still lacking at the intraspecific level, especially for species with a wide geographical distribution. As a result, we have studied the variation of wood anatomical traits related to sap conduction (i.e., vessel surface area, vessel density, and number of vessels joined by radial file) in two wild olive subspecies distributed in Morocco (i.e., Olea europaea subsp. europaea. var. sylvestris and Olea europaea subsp. maroccana), in relation to various drought conditions. This functional study, based on wood trait measurements of 351 samples from 130 trees and 13 populations, explores potential sap conduction in relation to environmental parameters and as a result, strategies to resist water stress. We found that (1) branch diameter (BD) captured 78% of total wood trait variation, (2) vessel size (SVS) expressed 32% of intraspecific variation according to cambium age, and (3) the positive relationship between SVS and BD could be explained by climate type, vegetation cover changes, and therefore available water resources. Taking into consideration the diameter of the branch as the main factor of anatomical variation, established reaction norms (linear models) at the intrapopulation scale of vessel lumen area according to aridity show for the first time how the functioning of the cambium modulates and controls sap conduction, according to aridity and thus available water resources. They pinpoint the risks incurred by the wild olive tree in the perspective of a dramatic increase in aridity, in particular, the inability of the cambium to produce large enough vessels to efficiently transport sap and irrigate the leaves. Finally, this study opens new and interesting avenues for studying at a Mediterranean scale, the resistance and the vulnerability of wild forms and cultivated varieties of olive to heterogeneous and changing environmental conditions.

5.
Sci Rep ; 11(1): 10830, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031505

RESUMO

The emergence of the Argan tree as an agricultural, pastoral, cultural, economic and ecological keystone species in Southern Morocco is considered to be linked to the settlement of agropastoral communities that favored its expansion. Nevertheless, the use and exploitation of Argan tree is documented by both few medieval written sources and archaeobotanical studies, from a single location, Îgîlîz (Toughmart, Morocco), a famous medieval site of the Anti-Atlas Mountains. Therefore, data remain scarce regarding the type of Argan communities exploited at this period. In order to document this question, a quantitative eco-anatomical approach aiming to understand variations of wood characters involved in sap conduction and reserve storage, is developed from modern samples collected in the area of Îgîlîz. Results show that diameter of branches and environmental factors are the major parameters explaining plasticity of wood anatomical characters. Quantitative eco-anatomical features of Argan archaeological charcoal confronted to two statistical models, allow assessing both the diameter of the branches from which it derives and the agro-ecological conditions of tree growth and development. This preliminary study may be considered as a relevant and pioneering work for the understanding of the eco-history of the Argan tree, and of its use and exploitation during the past.

6.
Sci Rep ; 11(1): 2305, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504834

RESUMO

A crucial aspect of viticulture is finally unveiled as the historical dynamics of its agrobiodiversity are described in the Champagne region for the first time. Outline analyses were carried out to compare the morphology of archaeological grape seeds from Troyes and Reims (first c. AD to fifteenth c. AD) with that of a reference collection of modern seeds, including wild vines and traditional grape varieties, believed to be ancient and characteristic of the French vine heritage. This allows us to document the chronological dynamics of the use of the wild Vitis type and of the diversity of the varieties used, based on morphological disparity. After showing the existence of morphological types corresponding to geographical groups, we highlight a geochronological dynamic. Our results show that the wild type is used throughout the series, up to the Middle Ages. In addition, domestic forms, morphologically related to southern varietal groups, are very early involved in the Champagne grape agrodiversity. The groups corresponding to the typical grape varieties of today do not appear until the second millennium. These previously unsuspected dynamics are discussed in light of the social, societal and climatic changes documented for the period.

7.
R Soc Open Sci ; 7(10): 201449, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33204482

RESUMO

Interactions between plants and insects evolved during millions of years of coevolution and maintain the trophic balance of terrestrial ecosystems. Documenting insect damage types (DT) on fossil leaves is essential for understanding the evolution of plant-insect interactions and for understanding the effects of major environmental changes on ecosystem structure. However, research focusing on palaeoherbivory is still sparse and only a tiny fraction of fossil leaf collections have been analysed. This study documents a type of insect damage found exclusively on the leaves of Parrotia species (Hamamelidaceae). This DT was identified on Parrotia leaves from Willershausen (Germany, Pliocene) and from Shanwang (China, Miocene) and on their respective endemic modern relatives: Parrotia perisca in the Hyrcanian forests (Iran) and Parrotia subaequalis in the Yixing forest (China). Our study demonstrates that this insect DT persisted over at least 15 Myr spanning eastern Asia to western Europe. Against expectations, more examples of this type of herbivory were identified on the fossil leaves than on the modern examples. This mismatch may suggest a decline of this specialized plant-insect interaction owing to the contraction of Parrotia populations in Eurasia during the late Cenozoic. However, the continuous presence of this DT demonstrates a robust and long-term plant-herbivore association, and provides new evidence for a shared biogeographic history of the two host plants.

8.
PLoS One ; 15(11): e0239863, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33156832

RESUMO

The phenotypic changes that occurred during the domestication and diversification of grapevine are well known, particularly changes in seed morphology, but the functional causes and consequences behind these variations are poorly understood. Wild and domesticate grapes differ, among others, in the form of their pips: wild grapes produce roundish pips with short stalks and cultivated varieties have more elongated pips with longer stalks. Such variations of form are of first importance for archaeobotany since the pip form is, most often, the only remaining information in archaeological settings. This study aims to enlighten archaeobotanical record and grapevine pip development by better understanding how size and shape (co)variates between pip and berry in both wild and domesticated Vitis vinifera. The covariation of berry size, number of seeds per berry ("piposity"), pip size and pip shape were explored on 49 grapevine accessions sampled among Euro-Mediterranean traditional cultivars and wild grapevines. We show that for wild grapevine, the higher the piposity, the bigger the berry and the more elongated the pip. For both wild and domesticated grapevine, the longer is the pip, the more it has a "domesticated" shape. Consequences for archaeobotanical studies are tested and discussed, and these covariations allowed the inference of berry dimensions from archaeological pips from a Southern France Roman site. This systematic exploration sheds light on new aspects of pip-berry relationship, in both size and shape, on grapevine eco-evo-devo changes during domestication, and invites to explore further the functional ecology of grapevine pip and berry and notably the impact of cultivation practices and human selection on grapevine morphology.


Assuntos
Domesticação , Frutas/anatomia & histologia , Sementes/anatomia & histologia , Frutas/genética , Frutas/fisiologia , Herança Multifatorial , Fenótipo , Sementes/genética , Vitis/genética , Vitis/fisiologia
9.
Evol Appl ; 13(8): 1818-1840, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32908588

RESUMO

Crop diversity is shaped by biological and social processes interacting at different spatiotemporal scales. Here, we combined population genetics and ethnobotany to investigate date palm (Phoenix dactylifera L.) diversity in Siwa Oasis, Egypt. Based on interviews with farmers and observation of practices in the field, we collected 149 date palms from Siwa Oasis and 27 uncultivated date palms from abandoned oases in the surrounding desert. Using genotyping data from 18 nuclear and plastid microsatellite loci, we confirmed that some named types each constitute a clonal line, that is, a true-to-type cultivar. We also found that others are collections of clonal lines, that is, ethnovarieties, or even unrelated samples, that is, local categories. This alters current assessments of agrobiodiversity, which are visibly underestimated, and uncovers the impact of low-intensity, but highly effective, farming practices on biodiversity. These hardly observable practices, hypothesized by ethnographic survey and confirmed by genetic analysis, are enabled by the way Isiwans conceive and classify living beings in their oasis, which do not quite match the way biologists do: a classic disparity of etic versus. emic categorizations. In addition, we established that Siwa date palms represent a unique and highly diverse genetic cluster, rather than a subset of North African and Middle Eastern palm diversity. As previously shown, North African date palms display evidence of introgression by the wild relative Phoenix theophrasti, and we found that the uncultivated date palms from the abandoned oases share even more alleles with this species than cultivated palms in this region. The study of Siwa date palms could hence be a key to the understanding of date palm diversification in North Africa. Integration of ethnography and population genetics promoted the understanding of the interplay between diversity management in the oasis (short-time scale), and the origins and dynamic of diversity through domestication and diversification (long-time scale).

10.
Sci Adv ; 6(6): eaax0384, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32076636

RESUMO

Germination of 2000-year-old seeds of Phoenix dactylifera from Judean desert archaeological sites provides a unique opportunity to study the Judean date palm, described in antiquity for the quality, size, and medicinal properties of its fruit, but lost for centuries. Microsatellite genotyping of germinated seeds indicates that exchanges of genetic material occurred between the Middle East (eastern) and North Africa (western) date palm gene pools, with older seeds exhibiting a more eastern nuclear genome on a gradient from east to west of genetic contributions. Ancient seeds were significantly longer and wider than modern varieties, supporting historical records of the large size of the Judean date. These findings, in accord with the region's location between east and west date palm gene pools, suggest that sophisticated agricultural practices may have contributed to the Judean date's historical reputation. Given its exceptional storage potentialities, the date palm is a remarkable model for seed longevity research.


Assuntos
Estudos de Associação Genética , Germinação/genética , Phoeniceae/anatomia & histologia , Phoeniceae/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Sementes/crescimento & desenvolvimento , Sementes/genética , Evolução Molecular , Técnicas de Genotipagem , Repetições de Microssatélites , Phoeniceae/classificação , Datação Radiométrica
11.
PLoS One ; 14(7): e0219908, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31314789

RESUMO

Climate-related studies have generally focussed upon physiologically well-defined 'mechanistic' traits rather than 'functional' ones relating indirectly to resource capture. Nevertheless, field responses to climate are likely to typically include both 'mechanistic' specialization to climatic extremes and 'functional' strategies that optimize resource acquisition during less climatically-severe periods. Here, this hypothesis was tested. Seventeen traits (six 'functional', six 'mechanistic' and five 'intermediate') were measured from 19 populations of oleaster (wild olive) along a climatic gradient in Morocco. Principal components analysis of the trait dataset identified size and the 'worldwide leaf economics spectrum' as PCA axes 1 and 2. However, contrary to our prediction, these axes, and commonly-measured 'functional' traits, were little correlated with climate. Instead, PCA 3, perhaps relating to water-use and succulence, together stomatal density, specific leaf water content and leaf shape, patterned with altitude, aridity, rainfall and temperature. We concluded that, at least for slow-growing species, such as oleaster, 'mechanistic' traits are key to identifying mechanisms of climatic restriction. Meaningful collaboration between 'mechanistic' and 'functional' disciplines provides the best way of improving our understanding of the global impacts of climate change on species distribution and performance.


Assuntos
Clima , Ecologia , Olea/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Característica Quantitativa Herdável , Altitude , Geografia Médica , Temperatura
12.
PeerJ ; 6: e5075, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942705

RESUMO

Plants and insects are constantly interacting in complex ways through forest communities since hundreds of millions of years. Those interactions are often related to variations in the climate. Climate change, due to human activities, may have disturbed these relationships in modern ecosystems. Fossil leaf assemblages are thus good opportunities to survey responses of plant-insect interactions to climate variations over the time. The goal of this study is to discuss the possible causes of the differences of plant-insect interactions' patterns in European paleoforests from the Neogene-Quaternary transition. This was accomplished through three fossil leaf assemblages: Willershausen, Berga (both from the late Neogene of Germany) and Bernasso (from the early Quaternary of France). In Willershausen it has been measured that half of the leaves presented insect interactions, 35% of the fossil leaves were impacted by insects in Bernasso and only 25% in Berga. The largest proportion of these interactions in Bernasso were categorized as specialist (mainly due to galling) while in Willershausen and Berga those ones were significantly more generalist. Contrary to previous studies, this study did not support the hypothesis that the mean annual precipitation and temperature were the main factors that impacted the different plant-insect interactions' patterns. However, for the first time, our results tend to support that the hydric seasonality and the mean temperature of the coolest months could be potential factors influencing fossil plant-insect interactions.

14.
Ann Bot ; 121(3): 385-403, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29293871

RESUMO

Background: Unravelling domestication processes is crucial for understanding how species respond to anthropogenic pressures, forecasting crop responses to future global changes and improving breeding programmes. Domestication processes for clonally propagated perennials differ markedly from those for seed-propagated annual crops, mostly due to long generation times, clonal propagation and recurrent admixture with local forms, leading to a limited number of generations of selection from wild ancestors. However, additional case studies are required to document this process more fully. Scope: The olive is an iconic species in Mediterranean cultural history. Its multiple uses and omnipresence in traditional agrosystems have made this species an economic pillar and cornerstone of Mediterranean agriculture. However, major questions about the domestication history of the olive remain unanswered. New paleobotanical, archeological, historical and molecular data have recently accumulated for olive, making it timely to carry out a critical re-evaluation of the biogeography of wild olives and the history of their cultivation. We review here the chronological history of wild olives and discuss the questions that remain unanswered, or even unasked, about their domestication history in the Mediterranean Basin. We argue that more detailed ecological genomics studies of wild and cultivated olives are crucial to improve our understanding of olive domestication. Multidisciplinary research integrating genomics, metagenomics and community ecology will make it possible to decipher the evolutionary ecology of one of the most iconic domesticated fruit trees worldwide. Conclusion: The olive is a relevant model for improving our knowledge of domestication processes in clonally propagated perennial crops, particularly those of the Mediterranean Basin. Future studies on the ecological and genomic shifts linked to domestication in olive and its associated community will provide insight into the phenotypic and molecular bases of crop adaptation to human uses.


Assuntos
Domesticação , Olea , Produção Agrícola/história , Ecologia , Genômica , História Antiga , Região do Mediterrâneo , Olea/genética , Filogeografia
15.
Curr Biol ; 27(14): 2211-2218.e8, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28712568

RESUMO

For many crops, wild relatives constitute an extraordinary resource for cultivar improvement [1, 2] and also help to better understand the history of their domestication [3]. However, the wild ancestor species of several perennial crops have not yet been identified. Perennial crops generally present a weak domestication syndrome allowing cultivated individuals to establish feral populations difficult to distinguish from truly wild populations, and there is frequently ongoing gene flow between wild relatives and the crop that might erode most genetic differences [4]. Here we report the discovery of populations of the wild ancestor species of the date palm (Phoenix dactylifera L.), one of the oldest and most important cultivated fruit plants in hot and arid regions of the Old World. We discovered these wild individuals in remote and isolated mountainous locations of Oman. They are genetically more diverse than and distinct from a representative sample of Middle Eastern cultivated date palms and exhibit rounded seed shapes resembling those of a close sister species and archeological samples, but not modern cultivars. Whole-genome sequencing of several wild and cultivated individuals revealed a complex domestication history involving the contribution of at least two wild sources to African cultivated date palms. The discovery of wild date palms offers a unique chance to further elucidate the history of this iconic crop that has constituted the cornerstone of traditional oasis polyculture systems for several thousand years [5].


Assuntos
Domesticação , Phoeniceae/anatomia & histologia , Phoeniceae/genética , Omã
16.
PLoS One ; 11(3): e0152394, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010707

RESUMO

Investigating crop origins is a priority to understand the evolution of plants under domestication, develop strategies for conservation and valorization of agrobiodiversity and acquire fundamental knowledge for cultivar improvement. The date palm (Phoenix dactylifera L.) belongs to the genus Phoenix, which comprises 14 species morphologically very close, sometimes hardly distinguishable. It has been cultivated for millennia in the Middle East and in North Africa and constitutes the keystone of oasis agriculture. Yet, its origins remain poorly understood as no wild populations are identified. Uncultivated populations have been described but they might represent feral, i.e. formerly cultivated, abandoned forms rather than truly wild populations. In this context, this study based on morphometrics applied to 1625 Phoenix seeds aims to (1) differentiate Phoenix species and (2) depict the domestication syndrome observed in cultivated date palm seeds using other Phoenix species as a "wild" reference. This will help discriminate truly wild from feral forms, thus providing new insights into the evolutionary history of this species. Seed size was evaluated using four parameters: length, width, thickness and dorsal view surface. Seed shape was quantified using outline analyses based on the Elliptic Fourier Transform method. The size and shape of seeds allowed an accurate differentiation of Phoenix species. The cultivated date palm shows distinctive size and shape features, compared to other Phoenix species: seeds are longer and elongated. This morphological shift may be interpreted as a domestication syndrome, resulting from the long-term history of cultivation, selection and human-mediated dispersion. Based on seed attributes, some uncultivated date palms from Oman may be identified as wild. This opens new prospects regarding the possible existence and characterization of relict wild populations and consequently for the understanding of the date palm origins. Finally, we here describe a pipeline for the identification of the domestication syndrome in seeds that could be used in other crops.


Assuntos
Phoeniceae/embriologia , Sementes/fisiologia
17.
Ann Bot ; 116(5): 847, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26378059

RESUMO

Since the publication of this paper, it has become apparent that an error was made in the legend to Fig. 3 and the colours referring to occidental and oriental are the wrong way round. The authors apologise for this error, and a correct version of the legend to Fig. 3 is given below.

18.
Ann Bot ; 116(1): 101-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26113618

RESUMO

BACKGROUND AND AIMS: Date palms (Phoenix dactylifera, Arecaceae) are of great economic and ecological value to the oasis agriculture of arid and semi-arid areas. However, despite the availability of a large date palm germplasm spreading from the Atlantic shores to Southern Asia, improvement of the species is being hampered by a lack of information on global genetic diversity and population structure. In order to contribute to the varietal improvement of date palms and to provide new insights on the influence of geographic origins and human activity on the genetic structure of the date palm, this study analysed the diversity of the species. METHODS: Genetic diversity levels and population genetic structure were investigated through the genotyping of a collection of 295 date palm accessions ranging from Mauritania to Pakistan using a set of 18 simple sequence repeat (SSR) markers and a plastid minisatellite. KEY RESULTS: Using a Bayesian clustering approach, the date palm genotypes can be structured into two different gene pools: the first, termed the Eastern pool, consists of accessions from Asia and Djibouti, whilst the second, termed the Western pool, consists of accessions from Africa. These results confirm the existence of two ancient gene pools that have contributed to the current date palm diversity. The presence of admixed genotypes is also noted, which points at gene flows between eastern and western origins, mostly from east to west, following a human-mediated diffusion of the species. CONCLUSIONS: This study assesses the distribution and level of genetic diversity of accessible date palm resources, provides new insights on the geographic origins and genetic history of the cultivated component of this species, and confirms the existence of at least two domestication origins. Furthermore, the strong genetic structure clearly established here is a prerequisite for any breeding programme exploiting the effective polymorphism related to each gene pool.


Assuntos
Variação Genética , Geografia , Phoeniceae/genética , Teorema de Bayes , Cloroplastos/genética , Análise por Conglomerados , Análise Discriminante , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Modelos Genéticos , Polimorfismo Genético , Análise de Componente Principal
19.
BMC Plant Biol ; 14: 229, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25179565

RESUMO

BACKGROUND: In Vitis vinifera L., domestication induced a dramatic change in flower morphology: the wild sylvestris subspecies is dioecious while hermaphroditism is largely predominant in the domesticated subsp. V. v. vinifera. The characterisation of polymorphisms in genes underlying the sex-determining chromosomal region may help clarify the history of domestication in grapevine and the evolution of sex chromosomes in plants. In the genus Vitis, sex determination is putatively controlled by one major locus with three alleles, male M, hermaphrodite H and female F, with an allelic dominance M > H > F. Previous genetic studies located the sex locus on chromosome 2. We used DNA polymorphisms of geographically diverse V. vinifera genotypes to confirm the position of this locus, to characterise the genetic diversity and traces of selection in candidate genes, and to explore the origin of hermaphroditism. RESULTS: In V. v. sylvestris, a sex-determining region of 154.8 kb, also present in other Vitis species, spans less than 1% of chromosome 2. It displays haplotype diversity, linkage disequilibrium and differentiation that typically correspond to a small XY sex-determining region with XY males and XX females. In male alleles, traces of purifying selection were found for a trehalose phosphatase, an exostosin and a WRKY transcription factor, with strikingly low polymorphism levels between distant geographic regions. Both diversity and network analysis revealed that H alleles are more closely related to M than to F alleles. CONCLUSIONS: Hermaphrodite alleles appear to derive from male alleles of wild grapevines, with successive recombination events allowing import of diversity from the X into the Y chromosomal region and slowing down the expansion of the region into a full heteromorphic chromosome. Our data are consistent with multiple domestication events and show traces of introgression from other Asian Vitis species into the cultivated grapevine gene pool.


Assuntos
Cromossomos de Plantas , Organismos Hermafroditas/genética , Seleção Genética , Processos de Determinação Sexual , Vitis/genética , Alelos , Produtos Agrícolas/genética , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo Genético
20.
PLoS One ; 8(5): e63195, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690998

RESUMO

Grapevine (Vitis vinifera), one of the most important fruit species in the Classical Mediterranean world, is thought to have been domesticated first in South-Western Asia, during the Neolithic. However, the domestication process remains largely unknown. Crucial unanswered questions concern the duration of the process (rapid or slow?) and the related geographical area (single or multiple-origins?). Seeds from domesticated grapevine and from its wild ancestor are reported to differ according to shape. Our work aims, first, to confirm this difference and secondly to identify the extent of domestication in the grapes cultivated by Romans in Southern France during the period 50 BCE-500 CE. We had the opportunity to analyze uncharred waterlogged grape pips from 17 archaeological sites. Based on an extended reference sample of modern wild grapevines and cultivars our work shows that both subspecies can be discriminated using simple measurements. The elongation gradient of the pip's body and stalk may be regarded as an indicator of the strength of the selection pressures undergone by domesticated grapes. Grapevines cultivated during the Roman period included a mix of morphotypes comprising wild, intermediate and moderately selected domesticated forms. Our data point to a relative shift towards more selected types during the Roman period. Domestication of the grapevine appears to have been a slow process. This could result from the recurrent incorporation into cultivation of plants originating from sexual reproduction, when grape cultivation essentially relies on vegetative propagation.


Assuntos
Arqueologia , Produtos Agrícolas , Vitis , França
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...