Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 902: 165957, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543314

RESUMO

Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.


Assuntos
Catarata , Acidente Nuclear de Chernobyl , Cristalinas , Animais , Espalhamento a Baixo Ângulo , Difração de Raios X , Catarata/etiologia , Catarata/veterinária , Catarata/metabolismo
2.
Materials (Basel) ; 15(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269067

RESUMO

Fibrotic scarring is prevalent in a range of collagenous tissue disorders. Understanding the role of matrix biophysics in contributing to fibrotic progression is important to develop therapies, as well as to elucidate biological mechanisms. Here, we demonstrate how microfocus small-angle X-ray scattering (SAXS), with in situ mechanics and correlative imaging, can provide quantitative and position-resolved information on the fibrotic matrix nanostructure and its mechanical properties. We use as an example the case of keloid scarring in skin. SAXS mapping reveals heterogeneous gradients in collagen fibrillar concentration, fibril pre-strain (variations in D-period) and a new interfibrillar component likely linked to proteoglycans, indicating evidence of a complex 3D structure at the nanoscale. Furthermore, we demonstrate a proof-of-principle for a diffraction-contrast correlative imaging technique, incorporating, for the first time, DIC and SAXS, and providing an initial estimate for measuring spatially resolved fibrillar-level strain and reorientation in such heterogeneous tissues. By application of the method, we quantify (at the microscale) fibrillar reorientations, increases in fibrillar D-period variance, and increases in mean D-period under macroscopic tissue strains of ~20%. Our results open the opportunity of using synchrotron X-ray nanomechanical imaging as a quantitative tool to probe structure-function relations in keloid and other fibrotic disorders in situ.

3.
Acta Biomater ; 142: 185-193, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35081430

RESUMO

The mechanical properties of connective tissues are tailored to their specific function, and changes can lead to dysfunction and pathology. In most mammalian tissues the mechanical environment is governed by the micro- and nano-scale structure of collagen and its interaction with other tissue components, however these hierarchical properties remain poorly understood. In this study we use the human cornea as a model system to characterise and quantify the dominant deformation mechanisms of connective tissue in response to cyclic loads of physiological magnitude. Synchronised biomechanical testing, x-ray scattering and 3D digital image correlation revealed the presence of two dominant mechanisms: collagen fibril elongation due to a largely elastic, spring-like straightening of tropocollagen supramolecular twist, and a more viscous straightening of fibril crimp that gradually increased over successive loading cycles. The distinct mechanical properties of the two mechanisms suggest they have separate roles in vivo. The elastic, spring-like mechanism is fast-acting and likely responds to stresses associated with the cardiac cycle, while the more viscous crimp mechanism will respond to slower processes, such as postural stresses. It is anticipated that these findings will have broad applicability to understanding the normal and pathological functioning of other connective tissues such as skin and blood vessels that exhibit both helical structures and crimp. STATEMENT OF SIGNIFICANCE: The tropocollagen spring mechanism allows collagen fibrils from some tissues to elongate significantly under small loads, and its recent discovery has the potential to change our fundamental understanding of how tissue deforms. This time-resolved study quantifies the contribution of the spring mechanism to the local strain in stretched tissue and compares it to the contribution associated with the straightening of fibril waviness, the widely accepted primary low-load strain mechanism. The spring mechanism contributed more to the local tissue strain than fibril straightening, and was found to be elastic while fibril straightening was more viscous. The results suggest that the viscoelastic behaviour of a biomaterial is controlled, at least in part, by the relative amount of fibril-scale crimp and tropocollagen supramolecular twist.


Assuntos
Colágeno , Tropocolágeno , Animais , Fenômenos Biomecânicos , Colágeno/química , Tecido Conjuntivo , Matriz Extracelular , Humanos , Mamíferos , Viscosidade
4.
Bone ; 143: 115666, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33007528

RESUMO

Glucocorticoid (or steroid) induced osteoporosis (GIOP) is the leading form of secondary osteoporosis, affecting up to 50% of patients receiving chronic glucocorticoid therapy. Bone quantity (bone mass) changes in GIOP patients alone are inadequate to explain the increased fracture risk, and bone material changes (bone quality) at multiple levels have been implicated in the reduced mechanics. Quantitative analysis of specific material-level changes is limited. Here, we combined multiscale experimental techniques (scanning small/wide-angle X-ray scattering/diffraction, backscattered electron imaging, and X-ray radiography) to investigate these changes in a mouse model (Crh-120/+) with chronic endogenous steroid production. Nanoscale degree of orientation, the size distribution of mineral nanocrystals in the bone matrix, the spatial map of mineralization on the femoral cortex, and the microporosity showed significant changes between GIOP and the control, especially in the endosteal cortex. Our work can provide insight into the altered structure-property relationship leading to lowered mechanical properties in GIOP. SIGNIFICANCE STATEMENT: As a natural nanocomposite with a hierarchical structure, bone undergoes a staggered load transfer mechanism at the nanoscale. Disease and age-related deterioration of bone mechanics are caused by changes in bone structure at multiple length scales. Although clinical tools such as dual-energy X-ray absorptiometry (DXA) can be used to assess the reduction of bone quantity in these cases, little is known about how altered bone quality in diseased bone can increase fracture risk. It is clear that high-resolution diagnostic techniques need to be developed to narrow the gap between the onset and diagnosis of fracture-related changes. Here, by combining several scanning probe methods on a mouse model (Crh-120/+) of glucocorticoid-induced osteoporosis (GIOP), we developed quantitative and spatially resolved maps of ultrastructural changes in collagen fibrils and mineral nanocrystals, mineralization distribution (microscale), and morphology (macroscale) across femoral osteoporotic bone. Our results indicate that the altered bone remodelling in GIOP leads to 1) heterogeneous bone structure and mineralization, 2) reduced degree of orientation of collagen fibrils and mineral nanocrystals, and 3) reduced length and increased thickness of mineral nanocrystals, which contribute to mechanical abnormalities. The combined multiscale experimental approach presented here will be used to understand musculoskeletal degeneration in aging and osteoporosis.


Assuntos
Nanocompostos , Osteoporose , Animais , Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Humanos , Camundongos , Esteroides
5.
J Synchrotron Radiat ; 27(Pt 5): 1438-1446, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32876621

RESUMO

B21 is a small-angle X-ray scattering (SAXS) beamline with a bending magnet source in the 3 GeV storage ring at the Diamond Light Source Ltd synchrotron in the UK. The beamline utilizes a double multi-layer monochromator and a toroidal focusing optic to deliver 2 × 1012 photons per second to a 34 × 40 µm (FWHM) focal spot at the in-vacuum Eiger 4M (Dectris) detector. A high-performance liquid chromatography system and a liquid-handling robot make it possible to load solution samples into a temperature-controlled in-vacuum sample cell with a high level of automation. Alternatively, a range of viscous or solid materials may be loaded manually using a range of custom sample cells. A default scattering vector range from 0.0026 to 0.34 Å-1 and low instrument background make B21 convenient for measuring a wide range of biological macromolecules. The beamline has run a full user programme since 2013.

6.
Sci Rep ; 10(1): 14208, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848149

RESUMO

Nanoscale mineralized collagen fibrils may be important determinants of whole-bone mechanical properties and contribute to the risk of age-related fractures. In a cross-sectional study nano- and tissue-level mechanics were compared across trabecular sections from the proximal femora of three groups (n = 10 each): ageing non-fractured donors (Controls); untreated fracture patients (Fx-Untreated); bisphosphonate-treated fracture patients (Fx-BisTreated). Collagen fibril, mineral and tissue mechanics were measured using synchrotron X-Ray diffraction of bone sections under load. Mechanical data were compared across groups, and tissue-level data were regressed against nano. Compared to controls fracture patients exhibited significantly lower critical tissue strain, max strain and normalized strength, with lower peak fibril and mineral strain. Bisphosphonate-treated exhibited the lowest properties. In all three groups, peak mineral strain coincided with maximum tissue strength (i.e. ultimate stress), whilst peak fibril strain occurred afterwards (i.e. higher tissue strain). Tissue strain and strength were positively and strongly correlated with peak fibril and mineral strains. Age-related fractures were associated with lower peak fibril and mineral strain irrespective of treatment. Indicating earlier mineral disengagement and the subsequent onset of fibril sliding is one of the key mechanisms leading to fracture. Treatments for fragility should target collagen-mineral interactions to restore nano-scale strain to that of healthy bone.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/fisiologia , Colágenos Fibrilares/fisiologia , Fraturas do Quadril/etiologia , Osteoporose/complicações , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Masculino , Nanoestruturas , Osteoporose/fisiopatologia
7.
J Anat ; 231(3): 325-341, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714118

RESUMO

The body wall of starfish is composed of magnesium calcite ossicles connected by collagenous tissue and muscles and it exhibits remarkable variability in stiffness, which is attributed to the mechanical mutability of the collagenous component. Using the common European starfish Asterias rubens as an experimental animal, here we have employed a variety of techniques to gain new insights into the structure of the starfish body wall. The structure and organisation of muscular and collagenous components of the body wall were analysed using trichrome staining. The muscle system comprises interossicular muscles as well as muscle strands that connect ossicles with the circular muscle layer of the coelomic lining. The collagenous tissue surrounding the ossicle network contains collagen fibres that form loop-shaped straps that wrap around calcite struts near to the surface of ossicles. The 3D architecture of the calcareous endoskeleton was visualised for the first time using X-ray microtomography, revealing the shapes and interactions of different ossicle types. Furthermore, analysis of the anatomical organisation of the ossicles indicates how changes in body shape may be achieved by local contraction/relaxation of interossicular muscles. Scanning synchrotron small-angle X-ray diffraction (SAXD) scans of the starfish aboral body wall and ambulacrum were used to study the collagenous tissue component at the fibrillar level. Collagen fibrils in aboral body wall were found to exhibit variable degrees of alignment, with high levels of alignment probably corresponding to regions where collagenous tissue is under tension. Collagen fibrils in the ambulacrum had a uniformly low degree of orientation, attributed to macrocrimp of the fibrils and the presence of slanted as well as horizontal fibrils connecting antimeric ambulacral ossicles. Body wall collagen fibril D-period lengths were similar to previously reported mammalian D-periods, but were significantly different between the aboral and ambulacral samples. The overlap/D-period length ratio within fibrils was higher than reported for mammalian tissues. Collectively, the data reported here provide new insights into the anatomy of the body wall in A. rubens and a foundation for further studies investigating the structural basis of the mechanical properties of echinoderm body wall tissue composites.


Assuntos
Asterias/anatomia & histologia , Animais , Colágeno/análise , Microtomografia por Raio-X
8.
Phys Chem Chem Phys ; 19(31): 20412-20419, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28731101

RESUMO

Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

9.
J R Soc Interface ; 14(131)2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28592658

RESUMO

The primary aim of this study was to quantify the relationship between corneal structure and hydration in humans and pigs. X-ray scattering data were collected from human and porcine corneas equilibrated with polyethylene glycol (PEG) to varying levels of hydration, to obtain measurements of collagen fibril diameter, interfibrillar spacing (IFS) and intermolecular spacing. Both species showed a strong positive linear correlation between hydration and IFS2 and a nonlinear, bi-phasic relationship between hydration and fibril diameter, whereby fibril diameter increased up to approximately physiological hydration, H = 3.0, with little change thereafter. Above H = 3.0, porcine corneas exhibited a larger fibril diameter than human corneas (p < 0.001). Intermolecular spacing also varied with hydration in a bi-phasic manner but reached a maximum value at a lower hydration (H = 1.5) than fibril diameter. Human corneas displayed a higher intermolecular spacing than porcine corneas at all hydrations (p < 0.0001). Human and porcine corneas required a similar PEG concentration to reach physiological hydration, suggesting that the total fixed charge that gives rise to the swelling pressure is the same. The difference in their structural responses to hydration can be explained by variations in molecular cross-linking and intra/interfibrillar water partitioning.


Assuntos
Substância Própria/fisiologia , Água/metabolismo , Animais , Bovinos , Humanos , Polietilenoglicóis , Ovinos , Especificidade da Espécie , Suínos
10.
Soft Matter ; 12(6): 1750-8, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26739043

RESUMO

We investigate the effect of microfluidic flow on the microstructure and dynamics of a model surfactant mixture, combining synchrotron Small Angle X-ray Scattering (SAXS), microscopy and rheology. A system comprising a single-chain cationic surfactant, hexadecyl trimethyl ammonium chloride (C16TAC), a short-chain alcohol (1-pentanol) and water was selected for the study due to its flow responsiveness and industrial relevance. Model flow fields, including sequential contraction-expansion (extensional) and rotational flows, were investigated and the fluid response in terms of the lamellar d-spacing, orientation and birefringence was monitored in situ, as well as the recovery processes after cessation of flow. Extensional flows are found to result in considerable d-spacing increase (from approx 59 Å to 65 Å). However, under continuous flow, swelling decreases with increasing flow velocity, eventually approaching the equilibrium values at velocities ≃2 cm s(-1). Through individual constrictions we observe the alignment of lamellae along the flow velocity, accompanied by increasing birefringence, followed by an orientation flip whereby lamellae exit perpendicularly to the flow direction. The resulting microstructures are mapped quantitatively onto the flow field in 2D with 200 µm spatial resolution. Rotational flows alone do not result in appreciable changes in lamellar spacing and flow type and magnitude evidently impact the fluid microstructure under flow, as well as upon relaxation. The findings are correlated with rheological properties measured ex situ to provide a mechanistic understanding of the effect of flow imposed by tubular processing units in the phase behavior and performance of a model surfactant system with ubiquitous applications in personal care and coating industries.

11.
Nat Commun ; 6: 8079, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314784

RESUMO

Hybrid glasses connect the emerging field of metal-organic frameworks (MOFs) with the glass formation, amorphization and melting processes of these chemically versatile systems. Though inorganic zeolites collapse around the glass transition and melt at higher temperatures, the relationship between amorphization and melting has so far not been investigated. Here we show how heating MOFs of zeolitic topology first results in a low density 'perfect' glass, similar to those formed in ice, silicon and disaccharides. This order-order transition leads to a super-strong liquid of low fragility that dynamically controls collapse, before a subsequent order-disorder transition, which creates a more fragile high-density liquid. After crystallization to a dense phase, which can be remelted, subsequent quenching results in a bulk glass, virtually identical to the high-density phase. We provide evidence that the wide-ranging melting temperatures of zeolitic MOFs are related to their network topologies and opens up the possibility of 'melt-casting' MOF glasses.

12.
ACS Appl Mater Interfaces ; 7(23): 12470-7, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-25635697

RESUMO

We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystyrene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.

13.
Langmuir ; 30(45): 13510-5, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25346159

RESUMO

Lipid cubic phase films are of increasingly widespread importance, both in the analysis of the cubic phases themselves by techniques including microscopy and X-ray scattering, and in their applications, especially as electrode coatings for electrochemical sensors and for templates for the electrodeposition of nanostructured metal. In this work we demonstrate that the crystallographic orientation adopted by these films is governed by minimization of interfacial energy. This is shown by the agreement between experimental data obtained using grazing-incidence small-angle X-ray scattering (GI-SAXS), and the predicted lowest energy orientation determined using a theoretical approach we have recently developed. GI-SAXS data show a high degree of orientation for films of both the double diamond phase and the gyroid phase, with the [111] and [110] directions respectively perpendicular to the planar substrate. In each case, this matches the lowest energy facet calculated for that particular phase.

14.
J Phys Chem B ; 117(22): 6724-32, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23597310

RESUMO

Interfacial phenomena occurring during high metal dissolution rates, in an environment with diffusion-limited transport of dissolution products, have been investigated using time-resolved X-ray diffraction (XRD), small-angle X-ray scattering (SAXS) and fast radiography. Time resolved SAXS data reveal that highly anisotropic interfacial X-ray scattering always precedes salt nucleation. The correlation between the interfacial scattering the presence of salt crystals indicates that the interface is between the metal electrode and the concentrated NiCl2 electrolyte and can therefore be interpreted as reflectivity or Porod scattering. Using fast radiography, we show that continued crystal nucleation and growth results in formation of a crystal-containing salt layer, which initially extends far from the interface (>20 µm), until the NiCl2 concentration decreases below saturation. Dissolution of this thick salt layer occurs mainly at the furthest boundary from the interface until, the salt layer thickness decreases to a steady state value, resulting in a steady state limiting current. These results show that the presence of a crystalline salt layer at a dissolving interface causes microscopic roughening which has implications for understanding both the role of salt films in pitting corrosion and electrochemical processing.

15.
Philos Trans A Math Phys Eng Sci ; 371(1988): 20120257, 2013 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-23459960

RESUMO

The response of anisotropic pigment particle suspensions to externally applied electric fields has been explored for possible application in reflective display technologies. Three different types of pigment particle were suspended in dodecane, using a polymeric stabilizer, and showed Schlieren textures between crossed polarizers at high concentrations (greater than 25-30 wt%), indicating the formation of colloidal nematic phases. Orientational order parameters were determined by X-ray scattering, and the influence of polydispersity on the values is discussed. X-ray scattering measurements also demonstrated a change in the structure factor consistent with the onset of a colloidal nematic phase. In addition, the pigment particles were dispersed into various liquid crystal hosts at low concentrations (less than 5 wt%) with and without the presence of mesogenic mimic stabilizers. However, the influence of these stabilizers on orientational ordering could not be confirmed. The electro-induced ordering determined via scattering was related to the electro-optical response of each suspension using a simple model. The particles in nematic hosts not only showed a high degree of orientational ordering at lower electric field strengths, but also showed a reduction in stability. Although these systems have shown strong orientational ordering, the optical response has been limited by the intrinsic shape of the pigment particles and the distribution of the transition dipoles moments within them. Nevertheless, the feasibility of developing materials for display applications has been demonstrated.

16.
Langmuir ; 28(36): 13018-24, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22894718

RESUMO

Monoacylglycerol based lipids are highly important model membrane components and attractive candidates for drug encapsulation and as delivery agents. However, optimizing the properties of these lipids for applications requires a detailed understanding of the thermodynamic factors governing the self-assembled structures that they form. Here, we report on the effects of hydrostatic pressure, temperature, and water composition on the structural behavior and stability of inverse lyotropic liquid crystalline phases adopted by monolinolein (an unsaturated monoacylglycerol having cis-double bonds at carbon positions 9 and 12) under limited hydration conditions. Six pressure-temperature phase diagrams have been determined using small-angle X-ray diffraction at water contents between 15 wt % and 27 wt % water, in the range 10-40 °C and 1-3000 bar. The gyroid bicontinuous cubic (Q(II)(G)) phase is formed at low pressure and high temperatures, transforming to a fluid lamellar (L(α)) phase at high pressures and low temperature via a region of Q(II)(G)/L(α) coexistence. Pressure stabilizes the lamellar phase over the Q(II)(G) phase; at fixed pressure, increasing the water content causes the coexistence region to move to lower temperature. These trends are consistent throughout the hydration range studied. Moreover, at fixed temperature, increasing the water composition increases the pressure at which the Q(II)(G) to L(α) transition takes place. We discuss the qualitative effect of pressure, temperature, and water content on the stability of the Q(II)(G) phase.


Assuntos
Glicerídeos/química , Água/química , Pressão Hidrostática , Membranas Artificiais , Modelos Moleculares , Transição de Fase , Termodinâmica
17.
Chem Cent J ; 6: 24, 2012 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-22462769

RESUMO

BACKGROUND: Isopropanol is widely used by conservators to relax the creases and folds of parchment artefacts. At present, little is known of the possible side effects of the chemical on parchments main structural component- collagen. This study uses X-ray Diffraction to investigate the effects of a range of isopropanol concentrations on the dimensions of the nanostructure of the collagen component of new parchment. RESULTS: It is found in this study that the packing features of the collagen molecules within the collagen fibril are altered by exposure to isopropanol. The results suggest that this chemical treatment can induce a loss of structural water from the collagen within parchment and thus a rearrangement of intermolecular bonding. This study also finds that the effects of isopropanol treatment are permanent to parchment artefacts and cannot be reversed with rehydration using deionised water. CONCLUSIONS: This study has shown that isopropanol induces permanent changes to the packing features of collagen within parchment artefacts and has provided scientific evidence that its use to remove creases and folds on parchment artefacts will cause structural change that may contribute to long-term deterioration of parchment artefacts. This work provides valuable information that informs conservation practitioners regarding the use of isopropanol on parchment artefacts.

18.
Rev Sci Instrum ; 81(6): 064103, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590253

RESUMO

A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.


Assuntos
Automação , Pressão , Difração de Raios X/instrumentação , Algoritmos , Desenho de Equipamento , Software , Temperatura , Fatores de Tempo , Interface Usuário-Computador , Difração de Raios X/métodos
19.
Langmuir ; 26(9): 6593-603, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20180583

RESUMO

The mechanism of green rust sulfate (GR-SO(4)) formation was determined using a novel in situ approach combining time-resolved synchrotron-based wide-angle X-ray scattering (WAXS) with highly controlled chemical synthesis and electrochemical (i.e., Eh and pH) monitoring of the reaction. Using this approach,GR-SO(4) was synthesized under strictly anaerobic conditions by coprecipitation from solutions with known Fe(II)/Fe(III) ratios (i.e., 1.28 and 2) via the controlled increase of pH. The reaction in both systems proceeded via a three-stage precipitation and transformation reaction. During the first stage,schwertmannite (Fe(8)O(8)(OH)(4.5)(SO(4))(1.75)) precipitated directly from solution at pH 2.8-4.5. With increasing pH (>5), Fe(2+) ions adsorb to the surface of schwertmannite and catalyze its transformation to goethite (alpha-FeOOH) during the second stage of the reaction. In the third stage, the hydrolysis of the adsorbed Fe(2+) ions on goethite initiates its transformation to GR-SO(4) at pH >7. The GR-SO(4) then continues to crystallize up to pH approximately 8.5. These results suggest that with an Fe(II)/Fe(III) ratio of < or = 2 in the initial solution the structural Fe(II)/Fe(III) of the GR-SO(4) will be close to that of the starting composition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...