Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Pharmacol Sci ; 45(6): 537-551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38762377

RESUMO

Cancer cells perturb lipid metabolic pathways for a variety of pro-tumorigenic functions, and deregulated cellular metabolism is a hallmark of cancer cells. Although alterations in lipid metabolism in cancer cells have been appreciated for over 20 years, there are no FDA-approved cancer treatments that target lipid-related pathways. Recent advances pertaining to cancer cell fatty acid synthesis (FAS), desaturation, and uptake, microenvironmental and dietary lipids, and lipid metabolism of tumor-infiltrating immune cells have illuminated promising clinical applications for targeting lipid metabolism. This review highlights emerging pathways and targets for tumor lipid metabolism that may soon impact clinical treatment.


Assuntos
Metabolismo dos Lipídeos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Ácidos Graxos/metabolismo , Terapia de Alvo Molecular
2.
Cell Metab ; 35(11): 2060-2076.e9, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37852255

RESUMO

A high-fat diet (HFD) promotes metastasis through increased uptake of saturated fatty acids (SFAs). The fatty acid transporter CD36 has been implicated in this process, but a detailed understanding of CD36 function is lacking. During matrix detachment, endoplasmic reticulum (ER) stress reduces SCD1 protein, resulting in increased lipid saturation. Subsequently, CD36 is induced in a p38- and AMPK-dependent manner to promote preferential uptake of monounsaturated fatty acids (MUFAs), thereby maintaining a balance between SFAs and MUFAs. In attached cells, CD36 palmitoylation is required for MUFA uptake and protection from palmitate-induced lipotoxicity. In breast cancer mouse models, CD36-deficiency induced ER stress while diminishing the pro-metastatic effect of HFD, and only a palmitoylation-proficient CD36 rescued this effect. Finally, AMPK-deficient tumors have reduced CD36 expression and are metastatically impaired, but ectopic CD36 expression restores their metastatic potential. Our results suggest that, rather than facilitating HFD-driven tumorigenesis, CD36 plays a supportive role by preventing SFA-induced lipotoxicity.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Graxos Monoinsaturados , Animais , Camundongos , Ácidos Graxos Monoinsaturados/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ácidos Graxos/metabolismo , Transporte Biológico , Homeostase
3.
Cell Metab ; 35(8): 1406-1423.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463576

RESUMO

Lactate was implicated in the activation of hepatic stellate cells (HSCs). However, the mechanism by which lactate exerts its effect remains elusive. Using RNA-seq and CUT&Tag chromatin profiling, we found that induction of hexokinase 2 (HK2) expression in activated HSCs is required for induced gene expression by histone lactylation but not histone acetylation. Inhibiting histone lactylation by Hk2 deletion or pharmacological inhibition of lactate production diminishes HSC activation, whereas exogenous lactate but not acetate supplementation rescues the activation phenotype. Thus, lactate produced by activated HSCs determines the HSC fate via histone lactylation. We found that histone acetylation competes with histone lactylation, which could explain why class I HDAC (histone deacetylase) inhibitors impede HSC activation. Finally, HSC-specific or systemic deletion of HK2 inhibits HSC activation and liver fibrosis in vivo. Therefore, we provide evidence that HK2 may be an effective therapeutic target for liver fibrosis.


Assuntos
Hexoquinase , Histonas , Humanos , Histonas/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo , Expressão Gênica , Lactatos/farmacologia
4.
Sci Adv ; 8(41): eabo2510, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223464

RESUMO

Hepatic steatosis is a major etiological factor in hepatocellular carcinoma (HCC), but factors causing lipid accumulation leading to HCC are not understood. We identify BNIP3 (a mitochondrial cargo receptor) as an HCC suppressor that mitigates against lipid accumulation to attenuate tumor cell growth. Targeted deletion of Bnip3 decreased tumor latency and increased tumor burden in a mouse model of HCC. This was associated with increased lipid in bnip3-/- HCC at early stages of disease, while lipid did not accumulate until later in tumorigenesis in wild-type mice, as Bnip3 expression was attenuated. Low BNIP3 expression in human HCC similarly correlated with increased lipid content and worse prognosis than HCC expressing high BNIP3. BNIP3 suppressed HCC cell growth by promoting lipid droplet turnover at the lysosome in a manner dependent on BNIP3 binding LC3. We have termed this process "mitolipophagy" because it involves the coordinated autophagic degradation of lipid droplets with mitochondria.

5.
Cell Death Dis ; 13(7): 660, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902556

RESUMO

Liver cancer (LC) is the fourth leading cause of death from cancer malignancies. Recently, a putative fifth hexokinase, hexokinase domain containing 1 (HKDC1), was shown to have significant overexpression in LC compared to healthy liver tissue. Using a combination of in vitro and in vivo tools, we examined the role of HKDC1 in LC development and progression. Importantly, HKDC1 ablation stops LC development and progression via its action at the mitochondria by promoting metabolic reprogramming and a shift of glucose flux away from the TCA cycle. HKDC1 ablation leads to mitochondrial dysfunction resulting in less cellular energy, which cannot be compensated by enhanced glucose uptake. Moreover, we show that the interaction of HKDC1 with the mitochondria is essential for its role in LC progression, and without this interaction, mitochondrial dysfunction occurs. As HKDC1 is highly expressed in LC cells, but only to a minimal degree in hepatocytes under normal conditions, targeting HKDC1, specifically its interaction with the mitochondria, may represent a highly selective approach to target cancer cells in LC.


Assuntos
Hexoquinase , Neoplasias Hepáticas , Glucose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Neoplasias Hepáticas/genética , Mitocôndrias/metabolismo
6.
Nat Commun ; 13(1): 899, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173161

RESUMO

Hexokinase 2 (HK2), which catalyzes the first committed step in glucose metabolism, is induced in cancer cells. HK2's role in tumorigenesis has been attributed to its glucose kinase activity. Here, we describe a kinase independent HK2 activity, which contributes to metastasis. HK2 binds and sequesters glycogen synthase kinase 3 (GSK3) and acts as a scaffold forming a ternary complex with the regulatory subunit of protein kinase A (PRKAR1a) and GSK3ß to facilitate GSK3ß phosphorylation and inhibition by PKA. Thus, HK2 functions as an A-kinase anchoring protein (AKAP). Phosphorylation by GSK3ß targets proteins for degradation. Consistently, HK2 increases the level and stability of GSK3 targets, MCL1, NRF2, and particularly SNAIL. In addition to GSK3 inhibition, HK2 kinase activity mediates SNAIL glycosylation, which prohibits its phosphorylation by GSK3. Finally, in mouse models of breast cancer metastasis, HK2 deficiency decreases SNAIL protein levels and inhibits SNAIL-mediated epithelial mesenchymal transition and metastasis.


Assuntos
Glucose/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hexoquinase/metabolismo , Neoplasias/patologia , Proteínas de Ancoragem à Quinase A/metabolismo , Células A549 , Animais , Células CHO , Carcinogênese/patologia , Linhagem Celular Tumoral , Cricetulus , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Desoxiglucose/farmacologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicosilação , Células HCT116 , Células HEK293 , Hexoquinase/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Metástase Neoplásica/patologia , Fosforilação/efeitos dos fármacos , Ratos , Fatores de Transcrição da Família Snail/metabolismo
7.
PLoS One ; 16(8): e0256238, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34411141

RESUMO

S100B is frequently elevated in malignant melanoma. A regulatory mechanism was uncovered here in which elevated S100B lowers mRNA and secreted protein levels of interleukin-6 (IL6) and inhibits an autocrine loop whereby IL6 activates STAT3 signaling. Our results showed that S100B affects IL6 expression transcriptionally. S100B was shown to form a calcium-dependent protein complex with the p90 ribosomal S6 kinase (RSK), which in turn sequesters RSK into the cytoplasm. Consistently, S100B inhibition was found to restore phosphorylation of a nuclear located RSK substrate, CREB, which is a potent transcription factor for IL6 expression. Thus, elevated S100B reduces IL6-STAT3 signaling via RSK signaling pathway in malignant melanoma. Indeed, the elevated S100B levels in malignant melanoma cell lines correspond to low levels of IL6 and p-STAT3.


Assuntos
Interleucina-6/genética , Melanoma/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Fator de Transcrição STAT3/genética , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Citoplasma/genética , Doxiciclina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/tratamento farmacológico , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Mol Cell ; 81(2): 226-238.e5, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33378644

RESUMO

Currently, either highly multiplexed genetic manipulations can be delivered to mammalian cells all at once or extensive engineering of gene regulatory sequences can be used to conditionally activate a few manipulations. Here, we provide proof of principle for a new system enabling multiple genetic manipulations to be executed as a preprogrammed cascade of events. The system leverages the programmability of the S. pyogenes Cas9 and is based on flexible arrangements of individual modules of activity. The basic module consists of an inactive single-guide RNA (sgRNA)-like component that is converted to an active state through the effects of another sgRNA. Modules can be arranged to bring about an algorithmic program of sequential genetic manipulations without the need for engineering cell-type-specific promoters or gene regulatory sequences. With the expanding diversity of available tools that use spCas9, this sgRNA-based system provides multiple levels of interfacing with mammalian cell biology.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Animais , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/química , Streptococcus pyogenes/enzimologia
9.
J Cell Sci ; 133(19)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32878945

RESUMO

The receptor tyrosine kinase (RTK) pathway plays an essential role in development and disease by controlling cell proliferation and differentiation. Here, we profile the Drosophila larval brain by single-cell RNA-sequencing and identify Amalgam (Ama), which encodes a cell adhesion protein of the immunoglobulin IgLON family, as regulating the RTK pathway activity during glial cell development. Depletion of Ama reduces cell proliferation, affects glial cell type composition and disrupts the blood-brain barrier (BBB), which leads to hemocyte infiltration and neuronal death. We show that Ama depletion lowers RTK activity by upregulating Sprouty (Sty), a negative regulator of the RTK pathway. Knockdown of Ama blocks oncogenic RTK signaling activation in the Drosophila glioma model and halts malignant transformation. Finally, knockdown of a human ortholog of Ama, LSAMP, results in upregulation of SPROUTY2 in glioblastoma cell lines, suggesting that the relationship between Ama and Sty is conserved.


Assuntos
Proteínas de Drosophila/genética , Drosophila , Imunoglobulinas/genética , Proteínas de Membrana/genética , Animais , Encéfalo/metabolismo , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo
10.
Endocrinology ; 160(2): 313-330, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517626

RESUMO

Glucokinase (GCK) is the principal hexokinase (HK) in the liver, operating as a glucose sensor to regulate glucose metabolism and lipid homeostasis. Recently, we proposed HK domain-containing 1 (HKDC1) to be a fifth HK with expression in the liver. Here, we reveal HKDC1 to have low glucose-phosphorylating ability and demonstrate its association with the mitochondria in hepatocytes. As we have shown previously that genetic deletion of HKDC1 leads to altered hepatic triglyceride levels, we also explored the influence of overexpression of HKDC1 in hepatocytes on cellular metabolism, observing reduced glycolytic capacity and maximal mitochondrial respiration with concurrent reductions in glucose oxidation and mitochondrial membrane potential. Furthermore, we found that acute in vivo overexpression of HKDC1 in the liver induced substantial changes in mitochondrial dynamics. Altogether, these findings suggest that overexpression of HKDC1 causes mitochondrial dysfunction in hepatocytes. However, its overexpression was not enough to alter energy storage in the liver but led to mild improvement in glucose tolerance. We next investigated the conditions necessary to induce HKDC1 expression, observing HKDC1 expression to be elevated in human patients whose livers were at more advanced stages of nonalcoholic fatty liver disease (NAFLD) and similarly, found high liver expression in mice on diets causing high levels of liver inflammation and fibrosis. Overall, our data suggest that HKDC1 expression in hepatocytes results in defective mitochondrial function and altered hepatocellular metabolism and speculate that its expression in the liver may play a role in the development of NAFLD.


Assuntos
Hexoquinase/metabolismo , Fígado/metabolismo , Sequência de Aminoácidos , Animais , Metabolismo Energético , Feminino , Teste de Tolerância a Glucose , Glicólise , Hepatócitos/enzimologia , Humanos , Masculino , Camundongos , Mitocôndrias Hepáticas/enzimologia , Hepatopatia Gordurosa não Alcoólica/etiologia
12.
Nat Commun ; 9(1): 2539, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29946147

RESUMO

In the originally published version of this Article, the colours of the bars in Fig. 4b were inadvertently switched during the production process, such that 'HK2-Dox' and 'HK2+Dox' were depicted in red and 'Nt-Dox' and 'Nt+Dox' were depicted in blue. These errors have now been corrected in both the PDF and HTML versions of the Article.

13.
Nat Commun ; 9(1): 446, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386513

RESUMO

Hepatocellular carcinoma (HCC) cells are metabolically distinct from normal hepatocytes by expressing the high-affinity hexokinase (HK2) and suppressing glucokinase (GCK). This is exploited to selectively target HCC. Hepatic HK2 deletion inhibits tumor incidence in a mouse model of hepatocarcinogenesis. Silencing HK2 in human HCC cells inhibits tumorigenesis and increases cell death, which cannot be restored by GCK or mitochondrial binding deficient HK2. Upon HK2 silencing, glucose flux to pyruvate and lactate is inhibited, but TCA fluxes are maintained. Serine uptake and glycine secretion are elevated suggesting increased requirement for one-carbon contribution. Consistently, vulnerability to serine depletion increases. The decrease in glycolysis is coupled to elevated oxidative phosphorylation, which is diminished by metformin, further increasing cell death and inhibiting tumor growth. Neither HK2 silencing nor metformin alone inhibits mTORC1, but their combination inhibits mTORC1 in an AMPK-independent and REDD1-dependent mechanism. Finally, HK2 silencing synergizes with sorafenib to inhibit tumor growth.


Assuntos
Carcinoma Hepatocelular/enzimologia , Hexoquinase/metabolismo , Neoplasias Hepáticas/enzimologia , Terapia de Alvo Molecular , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese , Carcinoma Hepatocelular/tratamento farmacológico , Glicólise , Células Hep G2 , Hexoquinase/antagonistas & inibidores , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Análise do Fluxo Metabólico , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos Nus , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Niacinamida/uso terapêutico , Fosforilação Oxidativa , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Sorafenibe , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...