Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 262: 124680, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37235957

RESUMO

Plant viruses can affect micro- and macro-nutrients homeostasis in woody plants, with fluctuation in the concentration of some elements at the leaf level due to the pathogen activity and/or the plant physiological response to the infection.Leaves of Fraxinus ornus L. (flowering ash) were sampled for three consecutive years in the city of Hamburg (Germany), from both trees showing the typical symptoms of the ash shoestring associated virus infection (ASaV+) and healthy trees (ASaV-). Such leaves were analyzed by µ-XRF, using both laboratory and synchrotron X-ray sources, and large differences between symptomatic and not symptomatic leaves were observed: ASaV+ samples showed uneven element distribution and regions of the lamina with severe depletions of P, S, and Ca. Differently, K appeared more concentrated. Thus, 139 leaflets sampled from various healthy and infected ash trees over the three-year period were analyzed for K and Ca concentration with a portable XRF instrument. We found that the K:Ca concentration ratio was always significantly higher in ASaV+ samples, and this trend was verified for all the samplings over the tree years. We conclude that the K:Ca ratio parameter has potential in the frame of trendsetting diagnostics and could be used, together with visual symptoms, for a rapid, non-destructive, on-site and cheap indirect ASaV detection.


Assuntos
Fraxinus , Viroses , Plantas , Árvores , Folhas de Planta
2.
Environ Sci Pollut Res Int ; 30(3): 6358-6372, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997877

RESUMO

Fire events can modify the distribution and speciation of potentially toxic elements (PTEs) in soil, especially if they are associated to organic matter (OM). In fact, OM can undergo substantial structural modifications at high temperatures, up to the complete mineralization. The present study aims to investigate the changes of PTEs' bioavailability to durum wheat (Triticum durum Desf.) plants after simulating fire events (up to 300 °C and 500 °C) in an agricultural soil polluted by Cr, Zn, Cu, and Pb. The PTEs' uptake and allocation in plant tissues were assessed using the RHIZOtest system. After the fire simulations, no evident risk of accumulation and translocation in plants was observed for Zn, Pb, and Cu. Conversely, a high accumulation in roots and a significant translocation to shoots were observed for Cr, which reached concentrations of 829 mg kg-1 in roots and 52 mg kg-1 in shoots at 500 °C. Additional experimental evidence suggested that Cr was taken up by plants grown on heated soils as Cr(VI). Once acquired by roots, only a small part of Cr (up to 6%) was translocated to shoots where it was likely present as mobile forms, as evidenced by micro X-ray fluorescence (µ-XRF) analyses. Overall, the results obtained provide evidence that the high temperatures occurring during fire events can increase the mobility and bioavailability of certain PTEs transforming apparently safe environments into potentially dangerous sources of pollution. These processes can ultimately affect the human health through the food chain transfer of PTEs or their migration into surface water and groundwater.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Triticum , Disponibilidade Biológica , Chumbo/análise , Poluentes do Solo/análise , Solo/química , Monitoramento Ambiental/métodos , Medição de Risco
3.
Food Chem ; 401: 134124, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126374

RESUMO

The increased costumers' request of safe and high-quality food products makes food traceability a priority for frauds identification and quality certification. Elemental profiling is one of the strategies used for food traceability, and TXRF spectroscopy is widely used in food analysis even if its potentialities have not been fully investigated. In this work, a new method for food traceability using directly TXRF spectra coupled with multivariate analyses, was tested. Twenty-four different beans' genotypes (Phaseolus vulgaris L.) grown onto two different sites have been studied. After the development of the method for beans' analysis, TXRF spectra were collected and processed with PCA combined with SNV and GLSW filter obtaining a perfect clustering of the seeds according to their geographical origin. Finally, using PLS-DA, beans were correctly classified demonstrating that TXRF spectra can be successfully used as fingerprint for food/seed traceability and that elemental quantification procedure is not necessary to this aim.


Assuntos
Phaseolus , Análise Discriminante , Análise dos Mínimos Quadrados , Análise Multivariada , Phaseolus/química , Sementes/química
4.
Nano Lett ; 22(11): 4437-4444, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35609011

RESUMO

CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.

5.
J Hazard Mater ; 436: 129117, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594675

RESUMO

Controlled or accidental fires can impact agricultural soils amended with composted organic materials since high temperatures cause fast organic matter (OM) mineralization and soil properties modifications. During these events, potentially toxic elements (PTEs) associated with OM can be released and change their distribution and speciation thus becoming a threat to the environment and to crops. In this study, we investigated the changes of distribution and speciation of chromium in soils long-term amended with compost obtained from tannery sludges, after simulating fires of different intensity (300, 400 and 500 °C) likely to occur on agricultural soils. A combination of conventional soil chemical analyses and bulk and (sub)micro X-ray analyses allowed the observation of the formation of hexavalent chromium and changes of chromium speciation. Specifically, a strong decrease of Cr-OM associations was found with increasing temperature in favour of Cr-iron (hydr)oxides interactions and CaCrO4 formation. These data provide first evidence that fires can transform OM-stabilized Cr into more mobile, available and toxic Cr-forms potentially accessible for plant uptake, thus posing a risk for the food chain and the environment.


Assuntos
Compostagem , Poluentes do Solo , Cromo/química , Esgotos , Solo/química , Poluentes do Solo/análise
6.
J Hazard Mater ; 421: 126762, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364207

RESUMO

Phytoremediation can be a promising and sustainable strategy to recovery Potentially Toxic Elements (PTEs) contaminated soils. However, at the field level, this tool can be limited by many issues. Herein, we combined native plant species with different cover type (mono and poly culture) in an in-field mesocosm experiment for the remediation of multi-contaminated soils from Bagnoli brownfield site (Southern Italy). We preliminary gain insights about the physical, chemical and biological features of the soils and subsequently induced a potential variation in the soil microbiome. We found that polyculture better respond both in terms of pollutant phytostabilization efficiency and from a stress tolerance perspective. Among plant species, Festuca achieved the best performance due to the overexpression of metal transporters able in both PTEs influx and sequestration from the cytoplasm. We achieved a site-specific bio-factory, which represents a strategy for the sustainable and relatively fast recovery of large contaminated areas.


Assuntos
Festuca , Poluentes do Solo , Biodegradação Ambiental , Metais , Solo , Poluentes do Solo/análise
7.
Biology (Basel) ; 10(7)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206819

RESUMO

Fire events in agricultural soils can modify not only soil properties but also the structure of soil microbial communities, especially in soils containing high concentrations of potentially toxic elements (PTEs). The recolonization of burned soils can in fact favor the proliferation of certain microorganisms, more adaptable to post-fire soil conditions and higher PTE availability, over others. In this study, we simulated with laboratory experiments the microbial recolonization of an agricultural soil containing high Cr concentrations after heating at 500 °C for 30 min, to mimic the burning of crop residues. Changes in soil properties and Cr speciation were assessed, as well as soil microbial structure by means of 16S rRNA gene sequencing. Both altered soil conditions and increased Cr availability, especially Cr(VI), appeared to be responsible for the reduction in species diversity in heated soils and the proliferation of Firmicutes. Indeed, already after 3 days from the heat treatment, Firmicutes increased from 14% to 60% relative abundance. In particular, Paenibacillus was the most abundant genus identified after the simulation, with an average relative abundance of 40%. These bacteria are known to be good fire-responders and Cr-tolerant. These results could be useful to identify bacterial strains to be used as bioindicators of altered environments and for the recovery of fire-impacted polluted sites.

8.
Chemosphere ; 281: 130752, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34015649

RESUMO

In the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry. Among soil elements, also potentially toxic elements (PTEs) can be affected by fires, becoming more or less mobile and bioavailable, depending on fire severity and soil characteristics. Such transformations could be particularly relevant in agricultural soils used for crop productions since fire events could modify PTEs speciation and uptake by plants and associated (micro)organisms thus endangering the whole food-chain. In this review, after describing the effects of fire on soil minerals and organic matter, the impact of fires on PTEs distribution and speciation in soils is presented, as well as their influence on soil microorganisms and plants uptake. The most common experimental methods used to simulate fires at the laboratory and field scale are briefly illustrated, and finally the impact that traditional and innovative agricultural practices can have on PTEs availability in burned agricultural soils is discussed in a future research perspective.


Assuntos
Poluentes do Solo , Solo , Agricultura , Disponibilidade Biológica , Florestas , Poluentes do Solo/análise
9.
Heliyon ; 7(2): e06177, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33644466

RESUMO

Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total-reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions.

10.
Nanoscale Adv ; 3(13): 3918-3928, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36133008

RESUMO

Stable cesium lead bromide perovskite nanocrystals (NCs) showing a near-unity photoluminescence quantum yield (PLQY), narrow emission profile, and tunable fluorescence peak in the green region can be considered the ideal class of nanomaterials for optoelectronic applications. However, a general route for ensuring the desired features of the perovskite NCs is still missing. In this paper, we propose a synthetic protocol for obtaining near-unity PLQY perovskite nanocubes, ensuring their size control and, consequently, a narrow and intense emission through the modification of the reaction temperature and the suitable combination ratio of the perovskite constituting elements. The peculiarity of this protocol is represented by the dissolution of the lead precursor (PbBr2) as a consequence of the exclusive complexation with the bromide anions released by the in situ SN2 reaction between oleylamine (the only surfactant introduced in the reaction mixture) and 1-bromohexane. The obtained CsPbBr3 nanocubes exhibit variable size (ranging from 6.7 ± 0.7 nm to 15.2 ± 1.2 nm), PL maxima between 505 and 517 nm, and near-unity PLQY with a narrow emission profile (fwhm of 17-19 nm). Additionally, the NCs synthesized with this approach preserve their high PLQYs even after 90 days of storage under ambient conditions, thus displaying a remarkable optical stability. Through the rationalization of the obtained results, the proposed synthetic protocol provides a new ground for the direct preparation of differently structured perovskite NCs without resorting to any additional post-synthetic treatment for improving their emission efficiency and stability.

11.
Sci Rep ; 10(1): 18759, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127977

RESUMO

Plasmopara viticola is one of the most important pathogens infecting Vitis vinifera plants. The interactions among P. viticola and both susceptible and resistant grapevine plants have been extensively characterised, at transcriptomic, proteomic and metabolomic levels. However, the involvement of plants ionome in the response against the pathogen has been completely neglected so far. Therefore, this study was aimed at investigating the possible role of leaf ionomic modulation during compatible and incompatible interactions between P. viticola and grapevine plants. In susceptible cultivars, a dramatic redistribution of mineral elements has been observed, thus uncovering a possible role for mineral nutrients in the response against pathogens. On the contrary, the resistant cultivars did not present substantial rearrangement of mineral elements at leaf level, except for manganese (Mn) and iron (Fe). This might demonstrate that, resistant cultivars, albeit expressing the resistance gene, still exploit a pathogen response mechanism based on the local increase in the concentration of microelements, which are involved in the synthesis of secondary metabolites and reactive oxygen species. Moreover, these data also highlight the link between the mineral nutrition and plants' response to pathogens, further stressing that appropriate fertilization strategies can be fundamental for the expression of response mechanisms against pathogens.


Assuntos
Minerais/metabolismo , Oomicetos/patogenicidade , Doenças das Plantas/microbiologia , Vitis/metabolismo , Vitis/microbiologia , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Manganês/metabolismo , Proteômica/métodos
12.
Front Plant Sci ; 11: 1208, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973822

RESUMO

The mechanism behind the bud evolution towards breba or main crop in Ficus carica L. is uncertain. Anatomical and genetic studies may put a light on the possible similarities/differences between the two types of fruits. For this reason, we collected complimentary data from anatomical, X-ray imaging, and genetic techniques. The RNA seq together with structural genome annotation allowed the prediction of 34,629 known genes and 938 novel protein-coding genes. Transcriptome analysis of genes during bud differentiation revealed differentially expressed genes in two fig varieties (Dottato and Petrelli) and in breba and main crop. We chose Dottato and Petrelli because the first variety does not require pollination to set main crop and the latter does; moreover, Petrelli yields many brebas whereas Dottato few. Of the 1,615 and 1,904 loci expressed in Dottato and Petrelli, specifically in breba or main crop, respectively, only 256 genes appeared to be transcripts in both varieties. The buds of the two fig varieties were observed under optical microscope and using 3D X-ray tomography, highlighting differences mainly related to the stage of development. The X-ray images of buds showed a great structural similarity between breba and main crop during the initial stages of development. Analysis at the microscope indicated that inflorescence differentiation of breba was split in two seasons whereas that of main crop started at the end of winter of season 2 and was completed within 2 to 3 months. The higher expression of floral homeotic protein AGAMOUS in breba with respect to main crop, since this protein is required for normal development of stamens and carpels in the flower, may indicate an original role of these fruits for staminate flowers production for pollination of the main crop, as profichi in the caprifig. Several genes related to auxin (auxin efflux carrier, auxin response factor, auxin binding protein, auxin responsive protein) and to GA synthesis (GA20ox) were highly expressed in brebas with respect to main crop for the development of this parthenocarpic fruit.

13.
Sci Rep ; 10(1): 13802, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796860

RESUMO

Notarchirico (Southern Italy) has yielded the earliest evidence of Acheulean settlement in Italy and four older occupation levels have recently been unearthed, including one with bifaces, extending the roots of the Acheulean in Italy even further back in time. New 40Ar/39Ar on tephras and ESR dates on bleached quartz securely and accurately place these occupations between 695 and 670 ka (MIS 17), penecontemporaneous with the Moulin-Quignon and la Noira sites (France). These new data demonstrate a very rapid expansion of shared traditions over Western Europe during a period of highly variable climatic conditions, including interglacial and glacial episodes, between 670 and 650 (i.e., MIS17/MIS16 transition). The diversity of tools and activities observed in these three sites shows that Western Europe was populated by adaptable hominins during this time. These conclusions question the existence of refuge areas during intense glacial stages and raise questions concerning understudied migration pathways, such as the Sicilian route.

14.
Nanoscale ; 12(32): 17053-17063, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32785320

RESUMO

The ongoing interest in all-inorganic cesium lead bromide perovskite nanocrystals (CsPbBr3 NCs) is mainly due to their optical properties, in particular their high photoluminescence quantum yields (PLQYs). Three-precursor synthetic methods, in which the sources of the three elements (cesium, lead and bromine) constituting the perovskite scaffold are chemically independent, often succeed in the achievement of near-unity PLQY perovskite NCs. However, this class of synthetic approaches precludes the accessibility to crystal morphologies different from the traditional cuboidal ones. In order to upgrade three-precursor synthetic schemes to obtain more sophisticated morphologies - such as rods - we propose a conceptually original synthetic methodology, in which a potentially controllable stage of the reaction anticipates the fast crystallization promoted by cesium injection. To this purpose, lead oxide, 1-bromohexane (at different molar ratios with respect to lead) and the ligands (oleic acid and a suitable amine) in 1-octadecene are reacted at 160 °C for an incubation period of 30 min before cesium injection. During this stage and at high C6H13Br/PbO molar ratios, the bromide release from reactions between the ligands and 1-bromohexane promotes the evolution of [PbBr(2+n)]n- species as well as of two-dimensional [(RNH3)2(PbBr4)]n structures with a rod-like shape (aspect ratios ∼10). These structures act as the templating agents for the subsequent crystallization promoted by cesium injection, ensuring the formation of near-unity PLQY nanorods in the presence of decylamine. Conversely, the pronounced decomposition of the preformed [(RNH3)2(PbBr4)]n structures preludes to the formation of near-unity PLQY nanocubes in the presence of hexylamine. The amine choice exerts also an important role in the emission stability of the corresponding NCs, since the nanocubes prepared in the presence of hexylamine maintain their near-unity PLQYs up to 90 days under ambient conditions. In addition to the long-term PLQY stability, the nanorods prepared with decylamine also exhibit a remarkable resistance to the presence of water, due to the compact and hydrophobic organic shell passivating the NC surface. These findings can contribute to the development of innovative synthetic methodologies for controlling the shape and stability of near-unity PLQY perovskite NCs.

15.
Talanta ; 217: 121114, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32498879

RESUMO

The combined potentiality of benchtop micro X-ray fluorescence spectroscopy (µ-XRF) and micro computed tomography (µ-CT) has been applied to describe microstructures, type and distribution of mineralogical phases as well as geological constraints on the history of the North West Africa (NWA) 8657 shergottite Martian meteorite. The 3D rendering of the sample was used to compute its vesiculation, infer the presence of cracks and reveal different shapes in its crystal habits including subhedral pyroxene phases and rounded sulphide and/or sulphates minerals. Phase discrimination was achieved by comparing chemical information about element distribution with mineral classes segmented as a function of their relative density. In particular, the relationships between the plagioclase/maskelynite phase and other minerals such as Ca-phosphates, the chemical zoning of Ca-pyroxenes and maskelynite and the presence of S-bearing phases in the form of K-sulphates and Fe-sulphides were revealed, which allowed reconstructing satisfactorily meteorite history. The successful performance of the combined approach used in this work shows promising for further application to other types of meteorites.

16.
Environ Sci Pollut Res Int ; 27(18): 22967-22979, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32323242

RESUMO

A combined approach based on multiple X-ray analytical techniques and conventional methods was adopted to investigate the distribution and speciation of Cr in a polluted agricultural soil, from the bulk-scale down to the (sub)micro-level. Soil samples were collected from two different points, together with a control sample taken from a nearby unpolluted site. The bulk characterization revealed that the polluted soils contained much higher concentrations of organic matter (OM) and potentially toxic elements (PTE) than the control. Chromium was the most abundant PTE (up to 5160 g kg-1), and was present only as Cr(III), as its oxidation to Cr(VI) was hindered by the high OM content. According to sequential extractions, Cr was mainly associated to the soil oxidisable fraction (74%) and to the residual fraction (25%). The amount of Cr potentially bioavailable for plant uptake (DTPA-extractable) was negligible. Characterization of soil thin sections by micro X-ray fluorescence (µXRF) and field emission scanning electron microscopy coupled with microanalysis (FEGSEM-EDX) showed that Cr was mainly distributed in aggregates ranging from tens micrometres to few millimetres in size. These aggregates were coated with an aluminosilicate layer and contained, in the inner part, Cr, Ca, Zn, P, S and Fe. Hyperspectral elaboration of µXRF data revealed that polluted soils were characterised by an exogenous organic-rich fraction containing Cr (not present in the control), and an endogenous aluminosilicate fraction (present also in the control), coating the Cr-containing aggregates. Analyses by high-resolution micro X-ray computed tomography (µCT) revealed a different morphology of the soil aggregates in polluted soils compared with the control. The finding of microscopic leather residues, combined with the results of bulk- and micro-characterizations, suggested that Cr pollution was likely ascribable to soil amendment with tannery waste-derived matrices. However, over the years, a natural process of Cr stabilization occurred in the soil thus reducing the environmental risks.


Assuntos
Poluentes do Solo/análise , Solo , Cromo/análise , Poluição Ambiental , Raios X
17.
Talanta ; 212: 120785, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32113548

RESUMO

The research on meteorites from hot and cold deserts is gaining advantages from the recent improvements of portable technologies such as X-ray fluorescence spectroscopy (XRF). The main advantages of portable instruments include the fast recognition of meteorites through their classification in macro-groups and discrimination from materials such as industrial slags, desert varnish covered rocks and iron oxides, named "meteor-wrongs". In this study, 18 meteorite samples of different nature and origin were discriminated and preliminarily classified into characteristic macro-groups: iron meteorites, stony meteorites and meteor-wrongs, combining a portable energy dispersive XRF instrument (pED-XRF), principal component analysis (PCA) and some machine learning algorithms applied to the XRF spectra. The results showed that 100% accuracy in sample classification was obtained by applying the cubic support vector machine (CSVM), fine kernel nearest neighbor (FKNN), subspace discriminant-ensemble classifiers (SD-EC) and subspace discriminant KNN-EC (SKNN-EC) algorithms on standardized spectra.

18.
Heliyon ; 6(2): e03325, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32055736

RESUMO

Spreading of manure on agricultural soils is a main source of ammonia emissions and/or nitrate leaching. It has been addressed by the European Union with the Directives 2001/81/EC and 91/676/EEC to protect the environment and the human health. The disposal of manure has therefore become an economic and environmental challenge for farmers. Thus, the conversion of manure via anaerobic digestion in a biogas plant could be a sustainable solution, having the byproducts (solid and liquid digestates) the potential to be used as fertilizers for crops. This work aimed at characterizing and assessing the effect of digestates obtained from a local biogas plant (Biogas Wipptal, Gmbh), either in the form of liquid fraction or as a solid pellet on: (i) the fertility of the soils during an incubation experiment; (ii) the plant growth and nutritional status of different species (maize and cucumber). Moreover, an extensive characterization of the pellet was performed via X-ray microanalytical techniques. The data obtained showed that both digestates exhibit a fertilizing potential for crops, depending on the plant species and the fertilizer dose: the liquid fraction increases the shoot fresh weight at low dose in cucumber, conversely, the solid pellet increases the shoot fresh weight at high dose in maize. The liquid digestate may have the advantage to release nutrients (i.e. nitrogen) more rapidly to plants, but its storage represents the main constraint (i.e. ammonia volatilization). Indeed, pelleting the digestates could improve the storability of the fertilizer besides enhancing plant nutrient availability (i.e. phosphate and potassium), plant biomass and soil biochemical quality (i.e. microbial biomass and activity). The physical structure and chemical composition of pellet digestates allow nutrients to be easily mobilized over time, representing a possible source of mineral nutrients also in long-term applications.

19.
Int J Phytoremediation ; 22(8): 789-803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960714

RESUMO

Phytoremediation is a widely studied and applied technology, based on the use of plants and their associated microorganisms to decontaminate polluted sites. In recent years, different strategies have been investigated to improve the phytoremediation efficiency of the selected plants. In this context, some studies have shown that herbicide-safeners, chemicals applied to crops to enhance their tolerance to herbicides, can increase the phytoremediation of soils and water polluted by organic and inorganic contaminants. Safeners, by inducing the xenobiotic detoxification and the antioxidant metabolism in plants, can enhance their removal potential in the cleaning process. In this review, after a short survey of phytoremediation technologies and the biochemical mechanisms activated by plants to tolerate and detoxify heavy metals and herbicides, the use of herbicide-safeners as a tool to increase the phytoremediation performance is reviewed and discussed.


Assuntos
Herbicidas , Poluentes do Solo , Biodegradação Ambiental , Inativação Metabólica , Plantas , Xenobióticos
20.
Environ Sci Pollut Res Int ; 27(9): 9835-9842, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31925697

RESUMO

A natural Mn mineral, i.e., todorokite [(Ca,Na,K)X(Mn4+,Mn3+)6O12·3.5H2O], has been collected in the Apulia region, south of Italy, and evaluated as an oxidation catalyst for the degradation of methyl orange (MO) dye. This Mn-todorokite mineral has been firstly characterized by X-ray diffraction, wavelength-dispersive X-ray fluorescence, BET, scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, and thermogravimetry. Catalytic dye-degradation data show that this Mn-todorokite can operate under strongly oxidizing potentials (Eh > + 400 mV) vs. standard hydrogen electrode performing fast MO degradation (t1/2 < 1 min). A detailed study using electron paramagnetic resonance spectroscopy revealed that, under oxidative conditions (Eh > + 450 mV), the active Mn centers of todorokite evolve rapidly through Mn3+/Mn4+ states and this is correlated with the fast catalytic degradation of MO. These results suggest Mn-todorokite mineral as an efficient, low-cost, and green catalyst which can be used for industrial and environmental purposes.


Assuntos
Compostos Azo , Catálise , Itália , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...