Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2401007, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695220

RESUMO

Self-healing microelectronics are needed for costly applications with limited or without access. They are needed in fields such as space exploration to increase lifetime and decrease both costs and the environmental impact. While advanced self-healing mechanisms for polymers are numerous, practical ways for self-healing in metal films have yet to be found. A concept for an autonomous intrinsic self-healing metallic film system is developed, allowing the healing of cracks in metallic films on flexible substrates. The concept relies on stabilizing metastable thin films with high mixing enthalpy via segregation barriers. This allows the films to possess autonomous intrinsic self-healing capabilities triggered by cracking at temperatures not detrimental to flexible microelectronics. The effect will be shown on metastable Mo1-xAgx thin films, stabilized via a Mo segregation barrier. Without a segregation barrier, the system is known to exhibit spontaneous Ag particle formation on the surface. This property is controlled and directed to heal cracks and partially restore the electro-mechanical properties of the multilayer system. This mechanism opens up the field of self-healing thin metallic films that could profoundly impact the design of future microelectronics.

2.
Nanomaterials (Basel) ; 14(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251129

RESUMO

In recent nanomaterials research, combining nanoporous carbons with metallic nanoparticles, like palladium (Pd), has emerged as a focus due to their potential in energy, environmental and biomedical fields. This study presents a novel approach for synthesizing Pd-decorated carbons using magnetron sputter deposition. This method allows for the functionalization of nanoporous carbon surfaces with Pd nano-sized islands, creating metal-carbon nanocomposites through brief deposition times of up to 15 s. The present research utilized direct current magnetron sputtering to deposit Pd islands on a flexible activated carbon cloth substrate. The surface chemistry, microstructure, morphology and pore structure were analyzed using a variety of material characterization techniques, including X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, gas sorption analysis and scanning electron microscopy. The results showed Pd islands of varying sizes distributed across the cloth's carbon fibers, achieving high-purity surface modifications without the use of chemicals. The synthesis method preserves the nanoporous structure of the carbon cloth substrate while adding functional Pd islands, which could be potentially useful in emerging fields like hydrogen storage, fuel cells and biosensors. This approach demonstrates the possibility of creating high-quality metal-carbon composites using a simple, clean and economical method, expanding the possibilities for future nanomaterial-based applications.

3.
ACS Appl Nano Mater ; 4(1): 61-70, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33521588

RESUMO

Improving the interface stability for nanosized thin films on brittle substrates is crucial for technological applications such as microelectronics because the so-called brittle-ductile interfaces limit their overall reliability. By tuning the thin film properties, interface adhesion can be improved because of extrinsic toughening mechanisms during delamination. In this work, the influence of the film microstructure on interface adhesion was studied on a model brittle-ductile interface consisting of nanosized Cu films on brittle glass substrates. Therefore, 110 nm thin Cu films were deposited on glass substrates using magnetron sputtering. While film thickness, residual stresses, and texture of the Cu films were maintained comparable in the sputtering processes, the film microstructure was varied during deposition and via isothermal annealing, resulting in four different Cu films with bimodal grain size distributions. The interface adhesion of each Cu film was then determined using stressed Mo overlayers, which triggered Cu film delaminations in the shape of straight, spontaneous buckles. The mixed-mode adhesion energy for each film ranged from 2.35 J/m2 for the films with larger grains to 4.90 J/m2 for the films with the highest amount of nanosized grains. This surprising result could be clarified using an additional study of the buckles using focused ion beam cutting and quantification via confocal laser scanning microscopy to decouple and quantify the amount of elastic and plastic deformation stored in the buckled thin film. It could be shown that the films with smaller grains exhibit the possibility of absorbing a higher amount of energy during delamination, which explains their higher adhesion energy.

4.
Materials (Basel) ; 13(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936336

RESUMO

The sliding wear behavior of Cu-O coated steel disks functionalized with n-octadecyl-phosphonic acids was evaluated against aluminum in ball-on-disk tribometer experiments. After 5 m of sliding the friction coefficient of the functionalized sample with maximum molecular coverage is ≤0.3 ± 0.1. Surfaces with lower coverage mitigate friction and wear as well exhibiting initially similar low friction coefficients but reveal the breakdown of lubrication for sliding distances <5 m. The length of the low friction sliding distance before breakdown scales with the coverage of n-octadecylphosphonic acids on the Cu-O surface. Coverage hence determines the tribological behavior of the functionalized surface against sliding aluminum. As the coverage is increased, detrimental asperity contacts between the rubbing surfaces are reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...