Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(23): G26-G36, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707060

RESUMO

The Laser Communications Relay Demonstration is NASA's multi-year demonstration of laser communication from the Earth to a geosynchronous satellite. The mission currently has two optical ground stations (OGSs), with one in California (OGS1) and one in Hawaii (OGS2). Each ground terminal optical system consists of a high-order adaptive optics (AO) system, a laser transmit system, and a camera for target acquisition. The OGS1 AO system is responsible for compensating for the downlink beam for atmospheric turbulence and coupling it into the modem's single mode fiber. The mission requires a coupling efficiency of 50%, which necessitates a high-order AO system. To achieve this performance, the AO system uses two deformable mirrors with one mirror correcting for low-spatial-frequency aberrations with large amplitude and a second deformable mirror correcting for high-spatial-frequency aberrations with small amplitude. Turbulence is sensed with a Shack-Hartmann wavefront sensor. To meet its performance requirements in the most stressing conditions, the system can operate at frame rates of 20 kHz. This high frame rate is enabled by the design of the real-time control system. We present an overview of both the hardware and software design of the system, and describe the control system and methods of reducing non-common path aberrations. Finally, we show measured system performance.

2.
Opt Express ; 28(26): 39250-39265, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33379479

RESUMO

Structural, Thermal, and Optical Performance (STOP) analysis is important for understanding the dynamics and for predicting the performance of a large number of optical systems whose proper functioning is negatively influenced by thermally induced aberrations. Furthermore, STOP models are being used to design and test passive and active methods for the compensation of thermally induced aberrations. However, in many cases and scenarios, the lack of precise knowledge of system parameters and equations governing the dynamics of thermally induced aberrations can significantly deteriorate the prediction accuracy of STOP models. In such cases, STOP models and underlying parameters need to be estimated from the data. To the best of our knowledge, the problem of estimating transient state-space STOP models from the experimental data has not received significant attention. Similarly, little attention has been dedicated to the related problem of obtaining low-dimensional state-space models of thermally induced aberrations that can be used for the design of high-performance model-based control and estimation algorithms. Motivated by this, in this manuscript, we present a numerical proof of principle for estimating low-dimensional state-space models of thermally induced aberrations and for characterizing the transient dynamics. Our approach is based on the COMSOL Multiphysics simulation framework for generating the test data and on a system identification approach. We numerically test our method on a lens system with a temperature-dependent refractive index that is used in high-power laser systems. The dynamics of such a system is complex and described by the coupling of thermal, structural, and ray-tracing models. The approach proposed in this paper can be generalized to other types of optical systems.

3.
Opt Lett ; 40(7): 1575-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831388

RESUMO

High-order adaptive optics systems often suffer from significant computational latency, which ultimately limits the temporal error rejection bandwidth when classical controllers are employed. This Letter presents results from an on-sky, real-time implementation of an optimal controller on the PALM-3000 adaptive optics system at Palomar Observatory. The optimal controller is computed directly from open-loop wavefront measurements using a multichannel subspace system identification algorithm, and mitigates latency by explicitly predicting incident turbulence. Experimental results show a significant reduction in the residual wavefront error over the controlled spatial modes, illustrating the superior performance of the optimal control approach versus the nominal integral control architecture.

4.
J Opt Soc Am A Opt Image Sci Vis ; 29(8): 1625-38, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23201878

RESUMO

This paper compares two control methods to predict and correct aero-optical wavefronts derived from recent flight-test data. The first is an optimal linear time-invariant controller constructed from an identified state-space model of the turbulence flow. The second control method is an adaptive controller based on a recursive least-squares lattice filter. The performance of these control schemes versus classical integrator methods is investigated in an adaptive optics experiment that reproduces the aberrations from in-flight measurements of aero-optical turbulence. Experimental results show the improvement in wavefront correction achieved by both prediction methods. Altering the flow characteristics of the disturbance wavefront during the control process illustrates the ability of the adaptive controller to track changes in the aberration statistics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...