Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 950: 175702, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059372

RESUMO

4-hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product that is known to be elevated during oxidative stress. During systemic inflammation and endotoxemia, plasma levels of 4-HNE are elevated in response to lipopolysaccharide (LPS) stimulation. 4-HNE is a highly reactive molecule due to its generation of both Schiff bases and Michael adducts with proteins, which may result in modulation of inflammatory signaling pathways. In this study, we report the production of a 4-HNE adduct-specific monoclonal antibody (mAb) and the effectiveness of the intravenous injection of this mAb (1 mg/kg) in ameliorating LPS (10 mg/kg, i.v.)-induced endotoxemia and liver injury in mice. Endotoxic lethality in control mAb-treated group was suppressed by the administration of anti-4-HNE mAb (75 vs. 27%). After LPS injection, we observed a significant increase in the plasma levels of AST, ALT, IL-6, TNF-α and MCP-1, and elevated expressions of IL-6, IL-10 and TNF-α in the liver. All these elevations were inhibited by anti-4-HNE mAb treatment. As to the underlining mechanism, anti-4-HNE mAb inhibited the elevation of plasma high mobility group box-1 (HMGB1) levels, the translocation and release of HMGB1 in the liver and the formation of 4-HNE adducts themselves, suggesting a functional role of extracellular 4-HNE adducts in hypercytokinemia and liver injury associated with HMGB1 mobilization. In summary, this study reveals a novel therapeutic application of anti-4-HNE mAb for endotoxemia.


Assuntos
Endotoxemia , Proteína HMGB1 , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Proteína HMGB1/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Endotoxemia/induzido quimicamente , Fígado , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
2.
Cells ; 11(19)2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36230933

RESUMO

Intracerebral hemorrhage (ICH) is recognized as a severe clinical problem lacking effective treatment. High mobility group box-1 (HMGB1) exhibits inflammatory cytokine-like activity once released into the extracellular space from the nuclei. We previously demonstrated that intravenous injection of rat anti-HMGB1 monoclonal antibody (mAb) remarkably ameliorated brain injury in a rat ICH model. Therefore, we developed a humanized anti-HMGB1 mAb (OKY001) for clinical use. The present study examined whether and how the humanized anti-HMGB1 mAb ameliorates ICH injury in common marmosets. The results show that administration of humanized anti-HMGB1 mAb inhibited HMGB1 release from the brain into plasma, in association with a decrease of 4-hydroxynonenal (4-HNE) accumulation and a decrease in cerebral iron deposition. In addition, humanized anti-HMGB1 mAb treatment resulted in a reduction in brain injury volume at 12 d after ICH induction. Our in vitro experiment showed that recombinant HMGB1 inhibited hemoglobin uptake by macrophages through CD163 in the presence of haptoglobin, suggesting that the release of excess HMGB1 from the brain may induce a delay in hemoglobin scavenging, thereby allowing the toxic effects of hemoglobin, heme, and Fe2+ to persist. Finally, humanized anti-HMGB1 mAb reduced body weight loss and improved behavioral performance after ICH. Taken together, these results suggest that intravenous injection of humanized anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.


Assuntos
Lesões Encefálicas , Callithrix , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Citocinas , Proteína HMGB1/imunologia , Haptoglobinas/uso terapêutico , Heme , Ferro , Ratos , Ratos Wistar
3.
Front Immunol ; 13: 930683, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275732

RESUMO

Background: Systemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. Methods and results: EA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H1 receptor antagonist, but not by H2 or H3/4 receptor antagonists. Moreover, an H1-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H2-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. Conclusion: Histamine induces HMGB1 release from vascular endothelial cells solely through H1 receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis.


Assuntos
Anafilaxia , Histamina , Animais , Ratos , Anafilaxia/tratamento farmacológico , Clorfeniramina/farmacologia , Cromatina , Células Endoteliais , Epinefrina , Antagonistas dos Receptores Histamínicos H1/farmacologia , Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Inflamação/tratamento farmacológico , Norepinefrina , p-Metoxi-N-metilfenetilamina , Receptores Acoplados a Proteínas G , Receptores Histamínicos H1/metabolismo
4.
FASEB J ; 35(3): e21399, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559227

RESUMO

The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.


Assuntos
alfa-Globulinas/química , Córtex Cerebral/química , Proteína HMGB1/química , Hipóxia-Isquemia Encefálica/metabolismo , alfa-Globulinas/análise , Animais , Animais Recém-Nascidos , Feminino , Imunofluorescência , Proteína HMGB1/análise , Imuno-Histoquímica , Ratos , Ratos Wistar , Ressonância de Plasmônio de Superfície
5.
J Immunol ; 206(4): 737-750, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452125

RESUMO

Histidine-rich glycoprotein (HRG) is a multifunctional plasma protein and maintains the homeostasis of blood cells and vascular endothelial cells. In the current study, we demonstrate that HRG and recombinant HRG concentration dependently induced the phagocytic activity of isolated human neutrophils against fluorescence-labeled Escherichia coli and Staphylococcus aureus through the stimulation of CLEC1A receptors, maintaining their spherical round shape. The phagocytosis-inducing effects of HRG were inhibited by a specific anti-HRG Ab and enhanced by opsonization of bacteria with diluted serum. HRG and C5a prolonged the survival time of isolated human neutrophils, in association with a reduction in the spontaneous production of extracellular ROS. In contrast, HRG maintained the responsiveness of neutrophils to TNF-α, zymosan, and E. coli with regard to reactive oxygen species production. The blocking Ab for CLEC1A and recombinant CLEC1A-Fc fusion protein significantly inhibited the HRG-induced neutrophil rounding, phagocytic activity, and prolongation of survival time, suggesting the involvement of the CLEC1A receptor in the action of HRG on human neutrophils. These results as a whole indicated that HRG facilitated the clearance of E. coli and S. aureus by maintaining the neutrophil morphology and phagocytosis, contributing to the antiseptic effects of HRG in vivo.


Assuntos
Escherichia coli/imunologia , Lectinas Tipo C/imunologia , Neutrófilos/imunologia , Fagocitose , Proteínas/imunologia , Staphylococcus aureus/imunologia , Humanos
6.
J Pharmacol Exp Ther ; 375(3): 406-413, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077479

RESUMO

Histidine-rich glycoprotein (HRG) treatment ameliorated the survival rate of septic mice by suppressing excess immunothrombus formation. Although such findings suggested that HRG may be one of the most useful drugs for sepsis, obtaining a stable experimental system to standardize the HRG drug product is difficult to achieve using neutrophils isolated from volunteers. This is due to the short survival time and individual differences of human neutrophils. In the present study, we determined whether the differentiated neutrophil-like cell lines exhibited similar responses to HRG compared with human purified neutrophils. All-trans retinoic acid (ATRA) was employed to induce the differentiation of the human myeloid leukemia cell lines HL-60 and NB-4. Thereafter, the cells were treated with Hank's balanced salt solution, human serum albumin, or HRG. The effects of HRG on these cells were evaluated according to cell shape, microcapillary passage, reactive oxygen species (ROS) production, neutrophil extracellular traps (NETs) formation, the expression of activated CD11b, and cell viability. HRG maintained the round shape of differentiated neutrophil-like cells, decreased the time required by cells to pass through the microcapillaries, and inhibited ROS production, NETs formation, and the expression of activated CD11b on the cell surface. Moreover, the cells could survive longer in the presence of HRG than the control. The ATRA-induced differentiated cell lines could be used as alternatives to neutrophils to investigate the effects of HRG on neutrophils. This method can thus be used as an essential standardization test in pharmaceutical development. SIGNIFICANCE STATEMENT: Human neutrophils exhibit varying responses to histidine-rich glycoprotein (HRG); however, all-trans retinoic acid-induced differentiated neutrophil-like cell lines can be used as reliably proxies to investigate the effects of HRG on neutrophils. Additionally, these cell lines can be employed in the development of therapies for the treatment of sepsis.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Proteínas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Armadilhas Extracelulares/efeitos dos fármacos , Armadilhas Extracelulares/metabolismo , Células HL-60 , Humanos
7.
Mol Biol Rep ; 47(9): 7153-7159, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32885364

RESUMO

Previously, we found that advanced glycation endproducts (AGEs) directly interact with tumor necrosis factor (TNF)-like weak inducer of apoptosis, a cytokine that controls inflammation, and that this interaction inhibited its action. This finding raised the novel possibility that AGEs alter the function of other cytokines through direct interaction. To investigate this possibility, we performed comprehensive screening for candidates that interacted with AGEs using protein array analysis. The array analysis revealed that high mobility group box-1 (HMGB1) had a markedly high affinity for AGEs. HMGB1 is a representative proinflammatory damage-associated molecular pattern molecule, and is reported to interact with lipopolysaccharide (LPS) directly to exert its inflammatory function. When LPS, HMGB1, and AGEs were mixed, the mobility of HMGB1 had shifted significantly in native PAGE, suggesting that these three molecules formed a triplet complex. The addition of AGEs to the LPS-HMGB1 mixture synergistically potentiated LPS-HMGB1-stimulated TNF-α mRNA expression in macrophage-like RAW264.7 cells. In addition, using receptor knockout clones, the increased proinflammatory response by LPS-HMGB1-AGEs complex was demonstrated to be mediated via Toll-like receptor 4 and receptor for AGEs. Taken together, this study suggested that AGEs carry out their pathophysiological roles by potentiating the LPS-HMGB1-stimulated proinflammatory response through direct interactions.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Lipopolissacarídeos/toxicidade , Animais , Produtos Finais de Glicação Avançada/agonistas , Proteína HMGB1/agonistas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Células RAW 264.7
8.
Free Radic Res ; 54(8-9): 649-661, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32967483

RESUMO

Sepsis is caused by infections associated with life-threatening multiple organ failure (MOF). Septic MOF appears to be closely related to circulatory failure due to immunothrombosis. This process involves the production of reactive oxygen spices (ROS) in inflammatory sites. Therefore, the detoxification of the systemic excess ROS is important for the improvement of the process in septic pathogenesis. Histidine-rich glycoprotein (HRG), a plasma glycoprotein, ameliorates a septic condition through the suppression of both excess ROS production from neutrophils and immunothrombosis. Hydroxyl radical is known as the most important species among ROS in pathogenesis; however, the direct influence of HRG on hydroxyl radical formation and ROS activity is poorly understood. In this study, we showed that HRG, in a concentration-dependent manner, efficiently inhibited the production of hydroxyl radical induced by the Fenton's reaction through chelation of the divalent iron. HRG also exhibited antioxidant activity against peroxyl radical by oxidation of HRG itself as a substrate; however, it did not show superoxide dismutase and catalase-like activities. Additionally, HRG enhanced glutathione peroxidase, a well-known antioxidant enzyme, activity. These results suggest that HRG may play a unique role in suppression of the production of hydroxyl radicals and subsequent tissue damage at inflammatory sites. Marked reduction in plasma HRG in sepsis might lose such an important protective mechanism. Thus, the present study provides evidence that inhibition of ROS and ROS-production systems by HRG may contribute to antiseptic effects in vivo and that HRG could be potential therapy for ROS-related diseases.


Assuntos
Antioxidantes/química , Cátions Bivalentes/química , Glicoproteínas/química , Peróxido de Hidrogênio/química , Radical Hidroxila/química , Ferro/química , Proteínas/química , Sepse/genética , Humanos , Oxirredução , Sepse/patologia
9.
iScience ; 23(6): 101180, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32498020

RESUMO

High-mobility group box-1 (HMGB1) protein has been postulated to play a pathogenic role in severe sepsis. Histidine-rich glycoprotein (HRG), a 75 kDa plasma protein, was demonstrated to improve the survival rate of septic mice through the regulation of neutrophils and endothelium barrier function. As the relationship of HRG and HMGB1 remains poorly understood, we investigated the effects of HRG on HMGB1-mediated pathway in endothelial cells, focusing on the involvement of specific receptors for HRG. HRG potently inhibited the HMGB1 mobilization and effectively suppressed rHMGB1-induced inflammatory responses and expression of all three HMGB1 receptors in endothelial cells. Moreover, we first clarified that these protective effects of HRG on endothelial cells were mediated through C-type lectin domain family 1 member A (CLEC-1A) receptor. Thus, current study elucidates protective effects of HRG on vascular endothelial cells through inhibition of HMGB1-mediated pathways may contribute to the therapeutic effects of HRG on severe sepsis.

10.
Cells ; 9(3)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155899

RESUMO

High mobility group box-1 (HMGB1), a nonhistone chromatin DNA-binding protein, is released from neurons into the extracellular space under ischemic, hemorrhagic, and traumatic insults. However, the details of the time-dependent translocation of HMGB1 and the subcellular localization of HMGB1 through the release process in neurons remain unclear. In the present study, we examined the subcellular localization of HMGB1 during translocation of HMGB1 in the cytosolic compartment using a middle cerebral artery occlusion and reperfusion model in rats. Double immunofluorescence microscopy revealed that HMGB1 immunoreactivities were colocalized with MTCO1(mitochondrially encoded cytochrome c oxidase I), a marker of mitochondria, and catalase, a marker of peroxisomes, but not with Rab5/Rab7 (RAS-related GTP-binding protein), LC3A/B (microtubule-associated protein 1 light chain 3), KDEL (KDEL amino acid sequence), and LAMP1 (Lysosomal Associated Membrane Protein 1), which are endosome, phagosome, endoplasmic reticulum, and lysosome markers, respectively. Immunoelectron microscopy confirmed that immune-gold particles for HMGB1 were present inside the mitochondria and peroxisomes. Moreover, HMGB1 was found to be colocalized with Drp1 (Dynamin-related protein 1), which is involved in mitochondrial fission. These results revealed the specific subcellular localization of HMGB1 during its release process under ischemic conditions.


Assuntos
Proteína HMGB1/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Peroxissomos/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Glicoproteínas de Membrana , Proteínas de Membrana Transportadoras , Ratos
11.
Biotechnol Appl Biochem ; 67(2): 265-272, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31654427

RESUMO

Advanced glycation end products (AGEs) are considered to be related to the pathogenesis of some inflammatory diseases. AGEs were reported to stimulate the receptor for AGEs (RAGE), which causes inflammatory reactions. However, recently, toll-like receptors (TLRs), in addition to RAGE, have been reported to be related to AGE-mediated cellular responses, and it remains unclear which receptor is responsible for AGE recognition. To reveal the role of pattern-recognition receptors, including TLRs and/or RAGE, in AGE-mediated cellular responses, we generated macrophage-like RAW264.7 knockout (KO) cells lacking these receptors by genome editing using the CRISPR/Cas9 system and assessed AGE-stimulated changes in these cells. Comparison of the established clones suggested that RAGE partially affects the expression of TLRs. In the KO clone lacking TLR4 and TLR2, AGE-stimulated tumor necrosis factor alpha (TNF-α) expression and phosphorylation of IκBα, p38, and extracellular signal-regulated kinase (ERK) were significantly attenuated, suggesting that AGE-mediated responses are largely dependent on TLRs. On the other hand, on comparison of the AGE-stimulated responses between the KO clone lacking TLR4 and TLR2, and the clone lacking TLR4, TLR2, and RAGE, RAGE played little role in AGE-stimulated TNF-α transcription and ERK phosphorylation. Taken together, this study suggested that AGE-stimulated inflammatory responses occur mainly through TLRs rather than RAGE.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Macrófagos/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Produtos Finais de Glicação Avançada/genética , Camundongos , Células RAW 264.7 , Receptor para Produtos Finais de Glicação Avançada/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
12.
Br J Pharmacol ; 176(15): 2808-2824, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31093964

RESUMO

BACKGROUND AND PURPOSE: Microvascular barrier breakdown is a hallmark of sepsis that is associated with sepsis-induced multiorgan failure. Histidine-rich glycoprotein (HRG) is a 75-kDa plasma protein that was demonstrated to improve the survival of septic mice through regulation of cell shape, spontaneous ROS production in neutrophils, and adhesion of neutrophils to vascular endothelial cells. We investigated HRG's role in the LPS/TNF-α-induced barrier dysfunction of endothelial cells in vitro and in vivo and the possible mechanism, to clarify the definitive roles of HRG in sepsis. EXPERIMENTAL APPROACH: EA.hy 926 endothelial cells were pretreated with HRG or human serum albumin before stimulation with LPS/TNF-α. A variety of biochemical assays were applied to explore the underlying molecular mechanisms on how HRG protected the barrier function of vascular endothelium. KEY RESULTS: Immunostaining results showed that HRG maintains the endothelial monolayer integrity by inhibiting cytoskeleton reorganization, losses of VE-cadherin and ß-catenin, focal adhesion kinase degradation, and cell detachment induced by LPS/TNF-α. HRG also inhibited the cytokine secretion from endothelial cells induced by LPS/TNF-α, which was associated with reduced NF-κB activation. Moreover, HRG effectively prevented the LPS/TNF-α-induced increase in capillary permeability in vitro and in vivo. Finally, Western blot results demonstrated that HRG prevented the phosphorylation of MAPK family and RhoA activation, which are involved mainly in the regulation of cytoskeleton reorganization and barrier permeability. CONCLUSIONS AND IMPLICATIONS: Taken together, our results demonstrate that HRG has protective effects on vascular barrier function in vitro and in vivo, which may be due to the inhibition of MAPK family and Rho activation.


Assuntos
Células Endoteliais/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas/farmacologia , Sepse/metabolismo , Animais , Permeabilidade Capilar/efeitos dos fármacos , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos , Sepse/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa
13.
Pharmacol Res Perspect ; 7(3): e00481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31143450

RESUMO

Augmentation of natural killer (NK) cell cytotoxicity is one of the greatest challenges for cancer immunotherapy. Although histidine-rich glycoprotein (HRG), a 75-kDa glycoprotein with various immunomodulatory activities, reportedly elicits antitumor immunity, its effect on NK cell cytotoxicity is unclear. We assessed NK cell cytotoxicity against K562 cells. We also measured concentrations of cytokines and granzyme B in the cell supernatant. The proportion of CD56bright NK cells and NK cell surface PD-1 expression was assessed with flow cytometry. The neutralizing effects of anti-C-type lectin-like receptor (CLEC) 1B against HRG were also measured. NK cell morphological changes were analyzed via confocal microscopy. HRG significantly increased NK cell cytotoxicity against K562 cell lines. HRG also increased the release of granzyme B and the proportion of CD56bright NK cells. Further, HRG was able to decrease NK cell surface PD-1 expression. The effects of HRG on NK cells were reversed with anti-CLEC-1B antibodies. Additionally, we confirmed NK cell nuclear morphology and F-actin distribution, which are involved in the regulation of cytotoxic granule secretion. Because both PD-1 and CLEC-1B are associated with prognosis during malignancy, HRG incorporates these molecules to exert the antitumor immunity role. These facts indicate the potential of HRG to be a new target for cancer immunotherapy.


Assuntos
Células Matadoras Naturais/citologia , Lectinas Tipo C/metabolismo , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Proteínas/metabolismo , Actinas/metabolismo , Antígeno CD56/metabolismo , Núcleo Celular/metabolismo , Sobrevivência Celular , Células Cultivadas , Granzimas/metabolismo , Humanos , Imunoterapia , Células K562 , Células Matadoras Naturais/imunologia , Neoplasias/terapia
14.
World Neurosurg ; 122: e864-e871, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30391757

RESUMO

BACKGROUND: High mobility group box 1 (HMGB1) protein plays a key role in triggering inflammatory responses in many diseases. Our previous study showed that HMGB1 is found upstream of secondary damage in traumatic brain injury (TBI). We found that anti-HMGB1 monoclonal antibody (mAb) effectively decreased acute brain damage, including the disruption of the blood-brain barrier, brain edema, and neurologic dysfunction. This effect of anti-HMGB1 mAb lasts for at least 1 week. In this study, we explored subacute effects of anti-HMGB1 mAb after TBI. METHODS: TBI was induced in rats by fluid percussion. Anti-HMGB1 mAb or control mAb was given intravenously after TBI. Histochemical staining, plasma levels of HMGB1, motor activity and memory, and video electroencephalography monitoring were evaluated 2 weeks after fluid percussion injury. RESULTS: Anti-HMGB1 mAb remarkably attenuated accumulation of activated microglia in the rat cortex in the ipsilateral hemisphere after TBI. Anti-HMGB1 mAb also prevented neuronal death in the hippocampus in the ipsilateral hemisphere after TBI. Treatment of rats with anti-HMGB1 mAb inhibited HMGB1 translocation and suppressed impairment of motor function. The beneficial effects of anti-HMGB1 mAb on motor and cognitive function persisted for 14 days after injury. Treatment with anti-HMGB1 mAb also had positive effects on electroencephalography activity. CONCLUSIONS: The beneficial effects of anti-HMGB1 mAb continued during the subacute postinjury phase, suggesting that anti-HMGB1 mAb may prevent cognitive dysfunction after TBI.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Proteína HMGB1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/sangue , Anticorpos Monoclonais/farmacologia , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/patologia , Proteína HMGB1/sangue , Masculino , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
15.
Biotechnol Appl Biochem ; 66(2): 254-260, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30403295

RESUMO

Previously, we found that endogenously produced pro-inflammatory molecules, advanced glycation end products (AGEs), interact with tumor necrosis factor-like weak inducer of apoptosis (TWEAK), and attenuate its immunomodulatory function. In the present study, to elucidate the mechanism by which AGEs attenuate TWEAK function, we searched for regions responsible for TWEAK-AGE interaction using TWEAK deletion mutants. Pull-down assays with the TWEAK mutants and AGEs revealed that the C-terminal half of TWEAK, which is the region essential for receptor stimulation, was required for this interaction. On the other hand, the N-terminal deletion mutants did not exhibit a significant decrease in AGE binding. Moreover, a moderate decrease in the AGE binding by double-deletion in quartered C-terminal half regions and a substantial decrease by triple-deletion in this region were observed. In addition, full-length TWEAK stimulated IL-8 gene expression in endothelial EA.hy.926 cells, whereas the triple-deletion mutant lost much of this activity, suggesting that the TWEAK-AGE interaction sites overlap with the region needed to exert normal function of TWEAK. Our present findings may help to elucidate the pathophysiological roles of the TWEAK-AGE interaction for prevention and treatment of AGE-related inflammatory diseases.


Assuntos
Citocina TWEAK/metabolismo , Regulação da Expressão Gênica , Produtos Finais de Glicação Avançada/metabolismo , Interleucina-8/biossíntese , Linhagem Celular , Citocina TWEAK/genética , Produtos Finais de Glicação Avançada/genética , Humanos , Interleucina-8/genética , Ligação Proteica , Domínios Proteicos
16.
Pancreas ; 47(9): 1156-1164, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30192316

RESUMO

OBJECTIVES: Severe acute pancreatitis is a highly lethal disease caused by systemic inflammatory response syndrome, leading to multiple organ failure. We recently showed that histidine-rich glycoprotein (HRG) supplemental therapy ameliorated septic acute respiratory distress syndrome due to unnecessary neutrophil activation and immunothrombosis formation. Here, we evaluated the effect of HRG on lung inflammation followed by pancreatitis in a severe acute pancreatitis mouse model. METHODS: Mice received intraperitoneal injections of cerulein 7 times (100 µg/kg each) at 1-hour intervals to induce acute pancreatitis. Immediately after the first cerulein injection, phosphate-buffered saline, human serum albumin (20 mg/kg), or HRG (20 mg/kg) was intravenously injected. One hour after the last cerulein injection, phosphate-buffered saline or lipopolysaccharide (5 mg/kg) was intravenously injected into the tail vein. We evaluated lung inflammatory level after pancreatitis. RESULTS: We observed significantly decreased plasma HRG levels in an acute pancreatitis mouse model. Histidine-rich glycoprotein treatment inhibited lung edema and the accumulation of neutrophil in severe acute pancreatitis, but HRG did not directly affect pancreatitis. Moreover, HRG suppressed tumor necrosis factor α, inducible nitric oxide synthase, interleukin 6, and neutrophil elastase mRNA expression and myeloperoxidase activity in the lung. CONCLUSIONS: These data suggested that HRG ameliorated lung inflammation secondary to pancreatitis.


Assuntos
Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pancreatite/prevenção & controle , Proteínas/farmacologia , Doença Aguda , Animais , Ceruletídeo , Edema/imunologia , Edema/metabolismo , Edema/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Elastase de Leucócito/genética , Elastase de Leucócito/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/patologia , Índice de Gravidade de Doença , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
17.
Blood Adv ; 2(15): 1923-1934, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30093530

RESUMO

The plasma levels of inter-α inhibitor proteins (IAIPs) are decreased in patients with sepsis and the reduced levels correlate with increased mortality. In the present study, we examined the effects of IAIPs on human neutrophils to better understand the beneficial effects of IAIPs in the treatment of sepsis. We demonstrated that IAIPs induced a spherical shape that was smaller in size with a smooth cellular surface in a concentration-dependent manner. These changes were inhibited by a specific antibody against IAIPs. In contrast, bikunin, light chain of IAIP, had no effect on neutrophil morphology. The neutrophils treated with IAIPs could easily pass through the artificial microcapillaries and were prevented from entrapment inside the capillaries. Coincubation of human blood neutrophils with a confluent human vascular endothelial monolayer showed that adhesion of neutrophils on endothelial cells was suppressed by treatment with IAIPs. IAIPs inhibited the spontaneous release of reactive oxygen species (ROS) in a concentration-dependent fashion. ROS inhibition was associated with reductions in p47phox phosphorylation on Ser328. These results suggest that IAIP-induced morphological changes that render neutrophils quiescent, facilitate passage through the microvasculature, and reduce adhesion to vascular endothelial cells and production of ROS. Thus, IAIP plays a key role in controlling neutrophil activation.


Assuntos
Forma Celular , Neutrófilos/metabolismo , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , NADPH Oxidases/metabolismo , Neutrófilos/citologia
18.
J Pharmacol Sci ; 136(3): 97-106, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29544683

RESUMO

The apoptotic process of erythrocytes is known as eryptosis, and is characterized by phosphatidylserine (PS) expression on the outer membrane. PS-positive erythrocytes are increased in sepsis, and PS is believed to facilitate coagulation of erythrocytes and activate macrophages. However, the relationship between eryptosis and abnormal coagulation in sepsis is still not fully understood. Histidine-rich glycoprotein (HRG) inhibits immunothrombus formation by regulating neutrophils and vascular endothelial cells. In the present study, we subjected isolated erythrocytes to Zn2+ stimulation, which activated their aggregation and PS expression. We then determined the Zn2+ contents in septic lung and kidney tissues, and found that they were elevated, suggesting that eryptosis was enhanced in these tissues. Erythrocyte adhesion to endothelial cells was also significantly increased after Zn2+ stimulation, and this effect was inhibited by HRG. Finally, we examined HRG treatment in septic model mice, and found that HRG decreased hemolysis, possibly due to its ability to bind heme. Our study demonstrated a novel Zn2+-initiated aggregation/thrombus formation pathway. We also showed the regulatory role of HRG in this pathway, together with the ability of HRG to inhibit hemolysis under septic conditions. HRG supplementation might be a novel therapeutic strategy for inflammatory disorders, especially sepsis.


Assuntos
Agregação Eritrocítica/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Proteínas/farmacologia , Proteínas/fisiologia , Sepse/sangue , Animais , Células Cultivadas , Modelos Animais de Doenças , Eriptose , Eritrócitos/metabolismo , Heme/metabolismo , Humanos , Camundongos , Fosfatidilserinas , Ligação Proteica , Proteínas/metabolismo , Proteínas/uso terapêutico , Sepse/tratamento farmacológico , Trombose/induzido quimicamente , Compostos de Zinco/efeitos adversos
19.
J Pharmacol Sci ; 134(4): 218-224, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28843667

RESUMO

Advanced glycation end-products (AGEs) are produced by non-enzymatic glycation between protein and reducing sugar such as glucose. Although glyceraldehyde-derived AGEs (Glycer-AGEs), one of the AGEs subspecies, have been reported to be involved in the pathogenesis of various age-relating diseases such as diabetes mellitus or arteriosclerosis, little is known about the pathological and physiological mechanism of AGEs in vivo. In present study, we produced 4 kinds of polyclonal antibodies against AGEs subspecies and investigated the localization of AGEs-modified proteins in rat peripheral tissues, making use of these antibodies. We found that Glycer-AGEs and methylglyoxal-derived AGEs (MGO-AGEs) were present in pancreatic islets of healthy rats, distinguished clearly into the pancreatic α and ß cells, respectively. Although streptozotocin-induced diabetic rats suffered from remarkable impairment of pancreatic islets, the localization and deposit levels of the Glycer- and MGO-AGEs were not altered in the remaining α and ß cells. Remarkably, the MGO-AGEs in pancreatic ß cells were localized into the insulin-secretory granules. These results suggest that the cell-specific localization of AGEs-modified proteins are presence generally in healthy peripheral tissues, involved in physiological intracellular roles, such as a post-translational modulator contributing to the secretory and/or maturational functions of insulin.


Assuntos
Células Secretoras de Glucagon/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Masculino , Coelhos , Ratos Wistar , Estreptozocina
20.
Sci Rep ; 7: 46243, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393932

RESUMO

As one of the most lethal stroke subtypes, intracerebral hemorrhage (ICH) is acknowledged as a serious clinical problem lacking effective treatment. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. High mobility group box-1 (HMGB1) is a ubiquitous and abundant nonhistone DNA-binding protein, and is also an important proinflammatory molecule once released into the extracellular space from the nuclei. Here, we show that treatment with neutralizing anti-HMGB1 mAb (1 mg/kg, i.v. twice) remarkably ameliorated ICH-injury induced by local injection of collagenase IV in the striatum of rats. Administration of anti-HMGB1 mAb inhibited the release of HMGB1 into the extracellular space in the peri-hematomal region, reduced serum HMGB1 levels and decreased brain edema by protecting blood-brain barrier integrity, in association with decreased activated microglia and the expression of inflammation-related factors at 24 h after ICH. Consequently, anti-HMGB1 mAb reduced the oxidative stress and improved the behavioral performance of rats. These results strongly indicate that HMGB1 plays a critical role in the development of ICH-induced secondary injury through the amplification of plural inflammatory responses. Intravenous injection of neutralizing anti-HMGB1 mAb has potential as a novel therapeutic strategy for ICH.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Hemorragia Cerebral/complicações , Proteína HMGB1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Aquaporina 4/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Edema Encefálico/sangue , Edema Encefálico/complicações , Edema Encefálico/tratamento farmacológico , Edema Encefálico/patologia , Lesões Encefálicas/sangue , Hemorragia Cerebral/sangue , Proteína HMGB1/sangue , Inflamação/sangue , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos Wistar , Vasoconstrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...