Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(12): 105648, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505934

RESUMO

The gut microbiota influences host brain function, but the underlying gut-brain axis connections and molecular processes remain unclear. One pathway along this bidirectional communication system involves circulating microbially derived metabolites, such as short-chain fatty acids (SCFAs), which include butyrate and propionate. Brain endothelium is the main interface of communication between circulating signals and the brain, and it constitutes the main component of the blood-brain barrier (BBB). Here, we used a well-established in vitro BBB model treated with physiologically relevant concentrations of butyrate and propionate with and without lipopolysaccharide (LPS) to examine the effects of SCFAs on the actin cytoskeleton and tight junction protein structure. Both SCFAs induced distinct alterations to filamentous actin directionality. SCFAs also increased tight junction protein spikes and protected from LPS-induced tight-junction mis-localization, improved BBB integrity, and modulated mitochondrial network dynamics. These findings identify the actin cytoskeletal dynamics as another target further illuminating how SCFAs can influence BBB physiology.

2.
Front Pediatr ; 10: 734428, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389362

RESUMO

Introduction: Food sensitization is a first and strong indicator of immune deviation in the progression to other allergic conditions. Sensitization to food or other allergens and related inflammation during critical windows of infant development may adversely affect neurodevelopmental milestones. However, additional research is needed to test this association further. Methods: Associations between atopic (any food or aeroallergen) or food sensitization (specific to egg, soybean, peanut, and milk) at age 1 year and neurodevelopment up to 2 years of age were evaluated in the national CHILD Cohort Study, with a secondary aim examining whether these associations were sex-specific. Food and atopic sensitization were assessed by skin prick tests (SPT) in 1-year-old infants, with neurodevelopment assessed using the cognitive, language, motor, and social-emotional subscales of the Bayley Scales of Infant Development (BSID-III) administered at 1 and 2 years of age. Results: Atopic sensitization was present among 16.4% of infants, while 13.4% had food sensitizations. Only socioemotional scores reached statistical significance among the four BSID-III domains. Both atopic and food sensitization at 1 year of age was associated with lower social-emotional scores, independent of the infant's ethnicity. These findings were sex-specific and only observed among boys, among whom social-emotional scores were lowered by 5 points if atopic sensitization was present (-5.22 [95% CI: -9.96, -0.47], p = 0.03) or if food sensitization was present (-4.85 [95% CI: -9.82,0.11], p = 0.06). Similar results were observed using the standard SPT cut-off of ≥3 mm - for atopic sensitization (-5.17 [95% CI: -11.14, -0.80], p = 0.09) and for food sensitization (-4.61 [95% CI: -10.96, 1.74], p = 0.15). Conclusion: In our study of term infants, we found an inverse, cross-sectional association between atopic and food sensitization status and social-emotional development scores in male children but not female children.

3.
Expert Rev Clin Immunol ; 18(9): 901-922, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822921

RESUMO

INTRODUCTION: Epidemiologic studies are starting to report associations between antibiotic use in early life and neurodevelopmental disorders. Through mechanisms within the gut microbiota-brain axis, indeed, it is plausible that infant antibiotic treatment plays a role in the development of atopic disease and neurodevelopmental disorders. AREAS COVERED: This narrative review summarizes and interprets published evidence on infant antibiotic use in future outcomes of atopic disease, and neurodevelopmental delay and disorders, including attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). To this end, we critically assess study bias from two main confounding factors, maternal/infant infection and infant feeding status. We also discuss common mechanisms that link atopy and neurodevelopment, and propose hypotheses related to immune activation and the gut microbiome. EXPERT OPINION: Atopic disease and neurodevelopmental disorders share many risk factors and biological pathways. Infant antibiotic use has been linked to both disorders and is likely a marker for prenatal or infant infection. The mediating role of breastfeeding can also not be discounted. The exploration of causal pathways along the gut-brain axis leading toward neurodevelopmental impairment is evolving and of future interest.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Microbiota , Antibacterianos/efeitos adversos , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/terapia , Feminino , Humanos , Lactente , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA