Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(5): 1688-1695, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848327

RESUMO

Oxidized cobalt ferrite nanocrystals with a modified distribution of the magnetic cations in their spinel structure give place to an unusual exchange-coupled system with a double reversal of the magnetization, exchange bias, and increased coercivity, but without the presence of a clear physical interface that delimits two well-differentiated magnetic phases. More specifically, the partial oxidation of cobalt cations and the formation of Fe vacancies at the surface region entail the formation of a cobalt-rich mixed ferrite spinel, which is strongly pinned by the ferrimagnetic background from the cobalt ferrite lattice. This particular configuration of exchange-biased magnetic behavior, involving two different magnetic phases but without the occurrence of a crystallographically coherent interface, revolutionizes the established concept of exchange bias phenomenology.

2.
Nanomaterials (Basel) ; 11(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374786

RESUMO

Currently, the nanoparticle functionalization effect on supramolecular peptide-based hydrogels remains undescribed, but is expected to affect the hydrogels' self-assembly and final magnetic gel properties. Herein, two different functionalized nanoparticles: citrate-stabilized (14.4 ± 2.6 nm) and lipid-coated (8.9 ± 2.1 nm) magnetic nanoparticles, were used for the formation of dehydropeptide-based supramolecular magnetogels consisting of the ultra-short hydrogelator Cbz-L-Met-Z-ΔPhe-OH, with an assessment of their effect over gel properties. The lipid-coated nanoparticles were distributed along the hydrogel fibers, while citrate-stabilized nanoparticles were aggregated upon gelation, which resulted into a heating efficiency improvement and decrease, respectively. Further, the lipid-coated nanoparticles did not affect drug encapsulation and displayed improved drug release reproducibility compared to citrate-stabilized nanoparticles, despite the latter attaining a stronger AMF-trigger. This report points out that adsorption of nanoparticles to hydrogel fibers, which display domains that improve or do not affect drug encapsulation, can be explored as a means to optimize the development of supramolecular magnetogels to advance theranostic applications.

3.
Nanomaterials (Basel) ; 9(7)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323986

RESUMO

Metal-semiconductor nanocomposites have become interesting materials for the development of new photocatalytic hybrids. Along these lines, plasmonic nanoparticles have proven to be particularly efficient photosensitizers due to their ability to transfer plasmonic hot electrons onto large bandgap semiconductors such as TiO2, thus extending the activity of the latter into a broader range of the electromagnetic spectrum. The extent of this photosensitization process can be substantially enhanced in those geometries in which high electromagnetic fields are created at the metal-semiconductor interface. In this manner, the formation of plasmonic hot spots can be used as a versatile tool to engineer the photosensitization process in this family of hybrid materials. Herein, we introduce the use of titanate nanowires as ideal substrates for the assembly of Au nanorods and TiO2 nanoparticles, leading to the formation of robust hybrids with improved photocatalytic properties. Our approach shows that the correct choice of the individual units together with their rational assembly are of paramount importance in the development of complex nanostructures with advanced functionalities.

4.
J Nanosci Nanotechnol ; 19(8): 4930-4937, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913804

RESUMO

Clusters of magnetic nanocrystals are very advantageous if keeping the superparamagnetic state of the individual nanocrystals while taking advantage of a large total magnetic moment, as very convenient in sensing, catalysis and bio-related applications. Herein, we demonstrate how the molecular weight of poly(ethylene glycol) exerts a dominant role in controlling the final size of the clusters and individual crystallites forming them, which delineate the final magnetic properties and their potential applications.

5.
Langmuir ; 35(11): 4110-4116, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30789741

RESUMO

Nanostructures with concave shapes made from continuous segments of plasmonic metals are known to dramatically enhance Raman scattering. Their synthesis in solutions is hindered, however, by their thermodynamic instability due to large surface area and high curvature of refracted geometries with nanoscale dimensions. Herein, we show that nanostructures with concave geometries can spontaneously form via self-organization of gold nanoparticles (NPs) at the air-water interface. The weakly bound surface ligands on the particle surface make possible their spontaneous accumulation and self-assembly at the air-water interface, forming monoparticulate films. Upon heating to 80 °C, the NPs further assemble into concave nanostructures where NPs are cold-welded to each other. Furthermore, the nanoassemblies effectively adsorb molecular analytes during their migration from the bulk solution to the surface where they can be probed by laser spectroscopies. We demonstrate that these films with local concentration of analytes increased by orders of magnitude and favorable plasmonic shapes can be exploited for surface-enhanced Raman scattering for high-sensitivity analysis of aliphatic molecules.

6.
Nanoscale Adv ; 1(6): 2086-2103, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-36131987

RESUMO

Iron oxide nanocrystals have become a versatile tool in biomedicine because of their low cytotoxicity while offering a wide range of tuneable magnetic properties that may be implemented in magnetic separation, drug and heat delivery and bioimaging. These capabilities rely on the unique magnetic features obtained when combining different iron oxide phases, so that an important portfolio of magnetic properties can be attained by the rational design of multicomponent nanocrystals. In this context, Raman spectroscopy is an invaluable and fast-performance tool to gain insight into the different phases forming part of the nanocrystals to be used, allowing correlation of the magnetic properties with the envisaged bio-related applications.

7.
Nanoscale ; 10(43): 20462-20467, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30379181

RESUMO

Iron oxide nanostructures are attractive for a variety of bio-related applications given their wide range of magnetic properties. Here, we report on the study of the magnetophoretic mobility of octapod-shaped nanocrystals, which we relate to stoichiometry, quality and elongation in the 111 direction of these cubic structures. This special morphology combines magnetocrystalline anisotropies, increases shape anisotropy and hinders the formation of an epitaxial wüstite-magnetite interface. As a result, one obtains nanocrystals with large magnetic susceptibility and small coercivity, that is, with optimum characteristics for magnetic guidance, separation, and drug delivery, due to the increased magnetophoretic mobility displayed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...