Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20240215, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654651

RESUMO

Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Ciclídeos/fisiologia , Comportamento Alimentar , Crânio , Regulação da Expressão Gênica , Fenótipo
2.
Mol Ecol ; 32(14): 3922-3941, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37160741

RESUMO

Adaptive phenotypes are shaped by a combination of genetic and environmental forces, but how they interact remains poorly understood. Here, we utilize the cichlid oral jaw apparatus to better understand these gene-by-environment effects. First, we employed RNA-seq in bony and ligamentous tissues important for jaw opening to identify differentially expressed genes between species and across foraging environments. We used two Lake Malawi species adapted to different foraging habitats along the pelagic-benthic ecomorphological axis. Our foraging treatments were designed to force animals to employ either suction or biting/scraping, which broadly mimic pelagic or benthic modes of feeding. We found a large number of differentially expressed genes between species, and while we identified relatively few differences between environments, species differences were far more pronounced when they were challenged with a pelagic versus benthic foraging mode. Expression data carried the signature of genetic assimilation, and implicated cell cycle regulation in shaping the jaw across species and environments. Next, we repeated the foraging experiment and performed ATAC-seq procedures on nuclei harvested from the same tissues. Cross-referencing results from both analyses revealed subsets of genes that were both differentially expressed and differentially accessible. This reduced dataset implicated notable candidate genes including the Hedgehog effector, KIAA0586 and the ETS transcription factor, etv4, which connects environmental stress and craniofacial morphogenesis. Taken together, these data provide novel insights into the epigenetic, genetic and cellular bases of species- and environment-specific bone shapes.


Assuntos
Ciclídeos , Arcada Osseodentária , Animais , Arcada Osseodentária/anatomia & histologia , Cromatina/metabolismo , Ciclídeos/genética , Ciclídeos/anatomia & histologia , Adaptação Fisiológica/genética , Ecossistema
3.
Dev Dyn ; 252(7): 1026-1045, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37032317

RESUMO

BACKGROUND: Phenotypic variation is of paramount importance in development, evolution, and human health; however, the molecular mechanisms that influence organ shape and shape variability are not well understood. During craniofacial development, the behavior of skeletal precursors is regulated by both biochemical and environmental inputs, and the primary cilia play critical roles in transducing both types of signals. Here, we examine a gene that encodes a key constituent of the ciliary rootlets, crocc2, and its role in cartilage morphogenesis in larval zebrafish. RESULTS: Geometric morphometric analysis of crocc2 mutants revealed altered craniofacial shapes and expanded variation. At the cellular level, we observed altered chondrocyte shapes and planar cell polarity across multiple stages in crocc2 mutants. Notably, cellular defects were specific to areas that experience direct mechanical input. Cartilage cell number, apoptosis, and bone patterning were not affected in crocc2 mutants. CONCLUSIONS: Whereas "regulatory" genes are widely implicated in patterning the craniofacial skeleton, genes that encode "structural" aspects of the cell are increasingly implicated in shaping the face. Our results add crocc2 to this list, and demonstrate that it affects craniofacial geometry and canalizes phenotypic variation. We propose that it does so via mechanosensing, possibly through the ciliary rootlet. If true, this would implicate a new organelle in skeletal development and evolution.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Humanos , Cartilagem , Condrócitos , Morfogênese/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
4.
Mol Biol Evol ; 38(8): 3078-3092, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33720362

RESUMO

Cichlid fishes exhibit rapid, extensive, and replicative adaptive radiation in feeding morphology. Plasticity of the cichlid jaw has also been well documented, and this combination of iterative evolution and developmental plasticity has led to the proposition that the cichlid feeding apparatus represents a morphological "flexible stem." Under this scenario, the fixation of environmentally sensitive genetic variation drives evolutionary divergence along a phenotypic axis established by the initial plastic response. Thus, if plasticity is predictable then so too should be the evolutionary response. We set out to explore these ideas at the molecular level by identifying genes that underlie both the evolution and plasticity of the cichlid jaw. As a first step, we fine-mapped an environment-specific quantitative trait loci for lower jaw shape in cichlids, and identified a nonsynonymous mutation in the ciliary rootlet coiled-coil 2 (crocc2), which encodes a major structural component of the primary cilium. Given that primary cilia play key roles in skeletal mechanosensing, we reasoned that this gene may confer its effects by regulating the sensitivity of bone to respond to mechanical input. Using both cichlids and zebrafish, we confirmed this prediction through a series of experiments targeting multiple levels of biological organization. Taken together, our results implicate crocc2 as a novel mediator of bone formation, plasticity, and evolution.


Assuntos
Adaptação Fisiológica , Ciclídeos/genética , Proteínas do Citoesqueleto/genética , Especiação Genética , Arcada Osseodentária/anatomia & histologia , Animais , Ciclídeos/anatomia & histologia , Feminino , Masculino
5.
Proc Natl Acad Sci U S A ; 117(32): 19321-19327, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719137

RESUMO

Phenotypic plasticity, the ability of a single genotype to produce multiple phenotypes under different environmental conditions, is critical for the origins and maintenance of biodiversity; however, the genetic mechanisms underlying plasticity as well as how variation in those mechanisms can drive evolutionary change remain poorly understood. Here, we examine the cichlid feeding apparatus, an icon of both prodigious evolutionary divergence and adaptive phenotypic plasticity. We first provide a tissue-level mechanism for plasticity in craniofacial shape by measuring rates of bone deposition within functionally salient elements of the feeding apparatus in fishes forced to employ alternate foraging modes. We show that levels and patterns of phenotypic plasticity are distinct among closely related cichlid species, underscoring the evolutionary potential of this trait. Next, we demonstrate that hedgehog (Hh) signaling, which has been implicated in the evolutionary divergence of cichlid feeding architecture, is associated with environmentally induced rates of bone deposition. Finally, to demonstrate that Hh levels are the cause of the plastic response and not simply the consequence of producing more bone, we use transgenic zebrafish in which Hh levels could be experimentally manipulated under different foraging conditions. Notably, we find that the ability to modulate bone deposition rates in different environments is dampened when Hh levels are reduced, whereas the sensitivity of bone deposition to different mechanical demands increases with elevated Hh levels. These data advance a mechanistic understanding of phenotypic plasticity in the teleost feeding apparatus and in doing so contribute key insights into the origins of adaptive morphological radiations.


Assuntos
Ciclídeos/metabolismo , Proteínas de Peixes/metabolismo , Proteínas Hedgehog/metabolismo , Crânio/crescimento & desenvolvimento , Adaptação Fisiológica , Animais , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Proteínas de Peixes/genética , Proteínas Hedgehog/genética , Transdução de Sinais , Crânio/metabolismo
6.
Commun Biol ; 1: 55, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271938

RESUMO

Elasmoid scales are the most common epithelial appendage among vertebrates, however an understanding of the genetic mechanisms that underlie variation in scale shape is lacking. Using an F2 mapping cross between morphologically distinct cichlid species, we identified >40 QTL for scale shape at different body positions. We show that while certain regions of the genome regulate variation in multiple scales, most are specific to scales at distinct positions. This suggests a degree of regional modularity in scale development. We also identified a single QTL for variation in scale shape disparity across the body. Finally, we screened a QTL hotspot for candidate loci, and identified the Fgf receptor fgfr1b as a prime target. Quantitative rtPCR and small molecule manipulation support a role for Fgf signaling in shaping cichlid scales. While Fgfs have previously been implicated in scale loss, these data reveal new roles for the pathway in scale shape variation.

7.
Nanotechnology ; 27(37): 374001, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27505356

RESUMO

We report on nanoparticle-stabilized capsules (NPSCs) as a platform for the co-delivery of survivin-targeted siRNA and tamoxifen. These capsules feature an inner oil core that provides a carrier for tamoxifen, and is coated on the surface with positively charged nanoparticles self-assembled with siRNA. The multifaceted chemical nature of the NPSC system enables the simultaneous delivery of both payloads directly into the cytosol in vitro. The NPSC co-delivery of tamoxifen and survivin-targeted siRNA into breast cancer cells disables the pathways that inhibit apoptosis, resulting in enhanced breast cell death.


Assuntos
Nanopartículas , Citosol , Proteínas Inibidoras de Apoptose , Nanocápsulas , RNA Interferente Pequeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...