Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1338026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741746

RESUMO

Plant microbiomes play important roles in plant health and fitness. Bacterial horizontal gene transfer (HGT) can influence plant health outcomes, driving the spread of both plant growth-promoting and phytopathogenic traits. However, community dynamics, including the range of genetic elements and bacteria involved in this process are still poorly understood. Integrons are genetic elements recently shown to be abundant in plant microbiomes, and are associated with HGT across broad phylogenetic boundaries. They facilitate the spread of gene cassettes, small mobile elements that collectively confer a diverse suite of adaptive functions. Here, we analysed 5,565 plant-associated bacterial genomes to investigate the prevalence and functional diversity of integrons in this niche. We found that integrons are particularly abundant in the genomes of Pseudomonadales, Burkholderiales, and Xanthomonadales. In total, we detected nearly 9,000 gene cassettes, and found that many could be involved in plant growth promotion or phytopathogenicity, suggesting that integrons might play a role in bacterial mutualistic or pathogenic lifestyles. The rhizosphere was enriched in cassettes involved in the transport and metabolism of diverse substrates, suggesting that they may aid in adaptation to this environment, which is rich in root exudates. We also found that integrons facilitate cross-species HGT, which is particularly enhanced in the phyllosphere. This finding may provide an ideal opportunity to promote plant growth by fostering the spread of genes cassettes relevant to leaf health. Together, our findings suggest that integrons are important elements in plant microbiomes that drive HGT, and have the potential to facilitate plant host adaptation.

2.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488860

RESUMO

Integrons are genetic platforms that capture, rearrange and express mobile modules called gene cassettes. The best characterized gene cassettes encode antibiotic resistance, but the function of most integron gene cassettes remains unknown. Functional predictions suggest that many gene cassettes could encode proteins that facilitate interactions with other cells and with the extracellular environment. Because cell interactions are essential for biofilm stability, we sequenced gene cassettes from biofilms growing on the surface of the marine macroalgae Ulva australis and Sargassum linearifolium. Algal samples were obtained from coastal rock platforms around Sydney, Australia, using seawater as a control. We demonstrated that integrons in microbial biofilms did not sample genes randomly from the surrounding seawater, but harboured specific functions that potentially provided an adaptive advantage to both the bacterial cells in biofilm communities and their macroalgal host. Further, integron gene cassettes had a well-defined spatial distribution, suggesting that each bacterial biofilm acquired these genetic elements via sampling from a large but localized pool of gene cassettes. These findings suggest two forms of filtering: a selective acquisition of different integron-containing bacterial species into the distinct biofilms on Ulva and Sargassum surfaces, and a selective retention of unique populations of gene cassettes at each sampling location.


Assuntos
Bactérias , Integrons , Integrons/genética , Bactérias/genética , Bactérias/metabolismo , Genes Bacterianos/genética , Resistência Microbiana a Medicamentos , Biofilmes
3.
Environ Microbiome ; 19(1): 9, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291480

RESUMO

BACKGROUND: Viruses play important roles in modulating microbial communities and influencing global biogeochemistry. There is now growing interest in characterising their ecological roles across diverse biomes. However, little is known about viral ecology in low-nutrient, chemotrophic-based environments. In such ecosystems, virus-driven manipulation of nutrient cycles might have profound impacts across trophic levels. In particular, anchialine environments, which are low-energy underground estuaries sustained by chemotrophic processes, represent ideal model systems to study novel virus-host-environment interactions. RESULTS: Here, we employ metagenomic sequencing to investigate the viral community in Bundera Sinkhole, an anchialine ecosystem rich in endemic species supported by microbial chemosynthesis. We find that the viruses are highly novel, with less than 2% representing described viruses, and are hugely abundant, making up as much as 12% of microbial intracellular DNA. These highly abundant viruses largely infect important prokaryotic taxa that drive key metabolic processes in the sinkhole. Further, the abundance of viral auxiliary metabolic genes (AMGs) involved in nucleotide and protein synthesis was strongly correlated with declines in environmental phosphate and sulphate concentrations. These AMGs encoded key enzymes needed to produce sulphur-containing amino acids, and phosphorus metabolic enzymes involved in purine and pyrimidine nucleotide synthesis. We hypothesise that this correlation is either due to selection of these AMGs under low phosphate and sulphate concentrations, highlighting the dynamic interactions between viruses, their hosts, and the environment; or, that these AMGs are driving increased viral nucleotide and protein synthesis via manipulation of host phosphorus and sulphur metabolism, consequently driving nutrient depletion in the surrounding water. CONCLUSION: This study represents the first metagenomic investigation of viruses in anchialine ecosystems, and provides new hypotheses and insights into virus-host-environment interactions in such 'dark', low-energy environments. This is particularly important since anchialine ecosystems are characterised by diverse endemic species, both in their microbial and faunal assemblages, which are primarily supported by microbial chemosynthesis. Thus, virus-host-environment interactions could have profound effects cascading through all trophic levels.

4.
J Antimicrob Chemother ; 79(1): 100-111, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37962091

RESUMO

OBJECTIVES: Our study aimed to sequence class 1 integrons in uncultured environmental bacterial cells in freshwater from suburban creeks and uncover the taxonomy of their bacterial hosts. We also aimed to characterize integron gene cassettes with altered DNA sequences relative to those from databases or literature and identify key signatures of their molecular evolution. METHODS: We applied a single-cell fusion PCR-based technique-emulsion, paired isolation and concatenation PCR (epicPCR)-to link class 1 integron gene cassette arrays to the phylogenetic markers of their bacterial hosts. The levels of streptomycin resistance conferred by the WT and altered aadA5 and aadA11 gene cassettes that encode aminoglycoside (3″) adenylyltransferases were experimentally quantified in an Escherichia coli host. RESULTS: Class 1 integron gene cassette arrays were detected in Alphaproteobacteria and Gammaproteobacteria hosts. A subset of three gene cassettes displayed signatures of molecular evolution, namely the gain of a regulatory 5'-untranslated region (5'-UTR), the loss of attC recombination sites between adjacent gene cassettes, and the invasion of a 5'-UTR by an IS element. Notably, our experimental testing of a novel variant of the aadA11 gene cassette demonstrated that gaining the observed 5'-UTR contributed to a 3-fold increase in the MIC of streptomycin relative to the ancestral reference gene cassette in E. coli. CONCLUSIONS: Dissecting the observed signatures of molecular evolution of class 1 integrons allowed us to explain their effects on antibiotic resistance phenotypes, while identifying their bacterial hosts enabled us to make better inferences on the likely origins of novel gene cassettes and IS that invade known gene cassettes.


Assuntos
Escherichia coli , Integrons , Integrons/genética , Filogenia , Emulsões , Antibacterianos/farmacologia , Reação em Cadeia da Polimerase , Bactérias , Estreptomicina , Evolução Molecular , Farmacorresistência Bacteriana/genética
5.
iScience ; 26(11): 108301, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026211

RESUMO

Integrons are genetic elements, found among diverse bacteria and archaea, that capture and rearrange gene cassettes to rapidly generate genetic diversity and drive adaptation. Despite their broad taxonomic and geographic prevalence, and their role in microbial adaptation, the functions of gene cassettes remain poorly characterized. Here, using a combination of bioinformatic and experimental analyses, we examined the functional diversity of gene cassettes from different environments. We find that cassettes encode diverse antimicrobial resistance (AMR) determinants, including those conferring resistance to antibiotics currently in the developmental pipeline. Further, we find a subset of cassette functions is universally enriched relative to their broader metagenomes. These are largely involved in (a)biotic interactions, including AMR, phage defense, virulence, biodegradation, and stress tolerance. The remainder of functions are sample-specific, suggesting that they confer localised functions relevant to their microenvironment. Together, they comprise functional profiles different from bulk metagenomes, representing niche-adaptive components of the prokaryotic pangenome.

6.
Microbiome ; 11(1): 190, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37626351

RESUMO

BACKGROUND: Anchialine environments, in which oceanic water mixes with freshwater in coastal aquifers, are characterised by stratified water columns with complex physicochemical profiles. These environments, also known as subterranean estuaries, support an abundance of endemic macro and microorganisms. There is now growing interest in characterising the metabolisms of anchialine microbial communities, which is essential for understanding how complex ecosystems are supported in extreme environments, and assessing their vulnerability to environmental change. However, the diversity of metabolic strategies that are utilised in anchialine ecosystems remains poorly understood. RESULTS: Here, we employ shotgun metagenomics to elucidate the key microorganisms and their dominant metabolisms along a physicochemical profile in Bundera Sinkhole, the only known continental subterranean estuary in the Southern Hemisphere. Genome-resolved metagenomics suggests that the communities are largely represented by novel taxonomic lineages, with 75% of metagenome-assembled genomes assigned to entirely new or uncharacterised families. These diverse and novel taxa displayed depth-dependent metabolisms, reflecting distinct phases along dissolved oxygen and salinity gradients. In particular, the communities appear to drive nutrient feedback loops involving nitrification, nitrate ammonification, and sulphate cycling. Genomic analysis of the most highly abundant members in this system suggests that an important source of chemotrophic energy is generated via the metabolic coupling of nitrogen and sulphur cycling. CONCLUSION: These findings substantially contribute to our understanding of the novel and specialised microbial communities in anchialine ecosystems, and highlight key chemosynthetic pathways that appear to be important in these energy-limited environments. Such knowledge is essential for the conservation of anchialine ecosystems, and sheds light on adaptive processes in extreme environments. Video Abstract.


Assuntos
Microbiota , Ciclo do Nitrogênio , Humanos , Microbiota/genética , Enxofre , Nitrificação , Austrália
7.
Environ Pollut ; 327: 121558, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019264

RESUMO

Plastic pollution is a serious global problem, with more than 12 million tonnes of plastic waste entering the oceans every year. Plastic debris can have considerable impacts on microbial community structure and functions in marine environments, and has been associated with an enrichment in pathogenic bacteria and antimicrobial resistance (AMR) genes. However, our understanding of these impacts is largely restricted to microbial assemblages on plastic surfaces. It is therefore unclear whether these effects are driven by the surface properties of plastics, providing an additional niche for certain microbes residing in biofilms, and/or chemicals leached from plastics, the effects of which could extend to surrounding planktonic bacteria. Here, we examine the effects of polyvinyl chloride (PVC) plastic leachate exposure on the relative abundance of genes associated with bacterial pathogenicity and AMR within a seawater microcosm community. We show that PVC leachate, in the absence of plastic surfaces, drives an enrichment in AMR and virulence genes. In particular, leachate exposure significantly enriches AMR genes that confer multidrug, aminoglycoside and peptide antibiotic resistance. Additionally, enrichment of genes involved in the extracellular secretion of virulence proteins was observed among pathogens of marine organisms. This study provides the first evidence that chemicals leached from plastic particles alone can enrich genes related to microbial pathogenesis within a bacterial community, expanding our knowledge of the environmental impacts of plastic pollution with potential consequences for human and ecosystem health.


Assuntos
Ecossistema , Plásticos , Humanos , Virulência , Plásticos/química , Resistência Microbiana a Medicamentos/genética , Bactérias/genética
8.
Environ Sci Technol ; 57(12): 4870-4879, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912846

RESUMO

Horizontal gene transfer (HGT) is a key driver of bacterial evolution via transmission of genetic materials across taxa. Class 1 integrons are genetic elements that correlate strongly with anthropogenic pollution and contribute to the spread of antimicrobial resistance (AMR) genes via HGT. Despite their significance to human health, there is a shortage of robust, culture-free surveillance technologies for identifying uncultivated environmental taxa that harbor class 1 integrons. We developed a modified version of epicPCR (emulsion, paired isolation, and concatenation polymerase chain reaction (PCR)) that links class 1 integrons amplified from single bacterial cells to taxonomic markers from the same cells in emulsified aqueous droplets. Using this single-cell genomic approach and Nanopore sequencing, we successfully assigned class 1 integron gene cassette arrays containing mostly AMR genes to their hosts in coastal water samples that were affected by pollution. Our work presents the first application of epicPCR for targeting variable, multigene loci of interest. We also identified the Rhizobacter genus as novel hosts of class 1 integrons. These findings establish epicPCR as a powerful tool for linking taxa to class 1 integrons in environmental bacterial communities and offer the potential to direct mitigation efforts toward hotspots of class 1 integron-mediated dissemination of AMR.


Assuntos
Farmacorresistência Bacteriana , Integrons , Humanos , Integrons/genética , Farmacorresistência Bacteriana/genética , Fusão Celular , Bactérias/genética , Reação em Cadeia da Polimerase , Antibacterianos/farmacologia
9.
Front Microbiol ; 14: 1091391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744093

RESUMO

Bacteriophages are versatile mobile genetic elements that play key roles in driving the evolution of their bacterial hosts through horizontal gene transfer. Phages co-evolve with their bacterial hosts and have plastic genomes with extensive mosaicism. In this study, we present bioinformatic and experimental evidence that temperate and virulent (lytic) phages carry integrons, including integron-integrase genes, attC/attI recombination sites and gene cassettes. Integrons are normally found in Bacteria, where they capture, express and re-arrange mobile gene cassettes via integron-integrase activity. We demonstrate experimentally that a panel of attC sites carried in virulent phage can be recognized by the bacterial class 1 integron-integrase (IntI1) and then integrated into the paradigmatic attI1 recombination site using an attC x attI recombination assay. With an increasing number of phage genomes projected to become available, more phage-associated integrons and their components will likely be identified in the future. The discovery of integron components in bacteriophages establishes a new route for lateral transfer of these elements and their cargo genes between bacterial host cells.

10.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748555

RESUMO

Membrane transporters are a large group of proteins that span cell membranes and contribute to critical cell processes, including delivery of essential nutrients, ejection of waste products, and assisting the cell in sensing environmental conditions. Obtaining an accurate and specific annotation of the transporter proteins encoded by a micro-organism can provide details of its likely nutritional preferences and environmental niche(s), and identify novel transporters that could be utilized in small molecule production in industrial biotechnology. The Transporter Automated Annotation Pipeline (TransAAP) (http://www.membranetransport.org/transportDB2/TransAAP_login.html) is a fully automated web service for the prediction and annotation of membrane transport proteins in an organism from its genome sequence, by using comparisons with both curated databases such as the TCDB (Transporter Classification Database) and TDB, as well as selected Pfams and TIGRFAMs of transporter families and other methodologies. TransAAP was used to annotate transporter genes in the prokaryotic genomes in the National Center for Biotechnology Information (NCBI) RefSeq; these are presented in the transporter database TransportDB (http://www.membranetransport.org) website, which has a suite of data visualization and analysis tools. Creation and maintenance of a bioinformatic database specific for transporters in all genomic datasets is essential for microbiology research groups and the general research/biotechnology community to obtain a detailed picture of membrane transporter systems in various environments, as well as comprehensive information on specific membrane transport proteins.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Membrana Transportadoras/genética , Clostridioides difficile/genética , Genômica/métodos , Genoma Bacteriano
11.
Sci Adv ; 8(46): eabq6376, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36383678

RESUMO

Horizontal gene transfer between different domains of life is increasingly being recognized as an important evolutionary driver, with the potential to increase the pace of biochemical innovation and environmental adaptation. However, the mechanisms underlying the recruitment of exogenous genes from foreign domains are mostly unknown. Integrons are a family of genetic elements that facilitate this process within Bacteria. However, they have not been reported outside Bacteria, and thus their potential role in cross-domain gene transfer has not been investigated. Here, we discover that integrons are also present in 75 archaeal metagenome-assembled genomes from nine phyla, and are particularly enriched among Asgard archaea. Furthermore, we provide experimental evidence that integrons can facilitate the recruitment of archaeal genes by bacteria. Our findings establish a previously unknown mechanism of cross-domain gene transfer whereby bacteria can incorporate archaeal genes from their surrounding environment via integron activity. These findings have important implications for prokaryotic ecology and evolution.

12.
Microbiome ; 10(1): 179, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36274162

RESUMO

BACKGROUND: Each year, approximately 9.5 million metric tons of plastic waste enter the ocean with the potential to adversely impact all trophic levels. Until now, our understanding of the impact of plastic pollution on marine microorganisms has been largely restricted to the microbial assemblages that colonize plastic particles. However, plastic debris also leaches considerable amounts of chemical additives into the water, and this has the potential to impact key groups of planktonic marine microbes, not just those organisms attached to plastic surfaces. RESULTS: To investigate this, we explored the population and genetic level responses of a marine microbial community following exposure to leachate from a common plastic (polyvinyl chloride) or zinc, a specific plastic additive. Both the full mix of substances leached from polyvinyl chloride (PVC) and zinc alone had profound impacts on the taxonomic and functional diversity of our natural planktonic community. Microbial primary producers, both prokaryotic and eukaryotic, which comprise the base of the marine food web, were strongly impaired by exposure to plastic leachates, showing significant declines in photosynthetic efficiency, diversity, and abundance. Key heterotrophic taxa, such as SAR11, which are the most abundant planktonic organisms in the ocean, also exhibited significant declines in relative abundance when exposed to higher levels of PVC leachate. In contrast, many copiotrophic bacteria, including members of the Alteromonadales, dramatically increased in relative abundance under both exposure treatments. Moreover, functional gene and genome analyses, derived from metagenomes, revealed that PVC leachate exposure selects for fast-adapting, motile organisms, along with enrichment in genes usually associated with pathogenicity and an increased capacity to metabolize organic compounds leached from PVC. CONCLUSIONS: This study shows that substances leached from plastics can restructure marine microbial communities with the potential for significant impacts on trophodynamics and biogeochemical cycling. These findings substantially expand our understanding of the ways by which plastic pollution impact life in our oceans, knowledge which is particularly important given that the burden of plastic pollution in the marine environment is predicted to continue to rise. Video Abstract.


Assuntos
Microbiota , Poluentes Químicos da Água , Plásticos/química , Cloreto de Polivinila , Poluentes Químicos da Água/química , Microbiota/genética , Zinco , Água
13.
Microb Genom ; 8(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35298369

RESUMO

Integrons are microbial genetic elements that can integrate mobile gene cassettes. They are mostly known for spreading antibiotic resistance cassettes among human pathogens. However, beyond clinical settings, gene cassettes encode an extraordinarily diverse range of functions important for bacterial adaptation. The recovery and sequencing of cassettes has promising applications, including: surveillance of clinically important genes, particularly antibiotic resistance determinants; investigating the functional diversity of integron-carrying bacteria; and novel enzyme discovery. Although gene cassettes can be directly recovered using PCR, there are no standardised methods for their amplification and, importantly, for validating sequences as genuine integron gene cassettes. Here, we present reproducible methods for the amplification, sequence processing, and validation of gene cassette amplicons from complex communities. We describe two different PCR assays that either amplify cassettes together with integron integrases, or gene cassettes together within cassette arrays. We compare the performance of Nanopore and Illumina sequencing, and present bioinformatic pipelines that filter sequences to ensure that they represent amplicons from genuine integrons. Using a diverse set of environmental DNAs, we show that our approach can consistently recover thousands of unique cassettes per sample and up to hundreds of different integron integrases. Recovered cassettes confer a wide range of functions, including antibiotic resistance, with as many as 300 resistance cassettes found in a single sample. In particular, we show that class one integrons are collecting and concentrating resistance genes out of the broader diversity of cassette functions. The methods described here can be applied to any environmental or clinical microbiome sample.


Assuntos
Integrons , Microbiota , Bactérias/genética , Resistência Microbiana a Medicamentos , Humanos , Integrases/genética , Integrons/genética , Microbiota/genética
14.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34788213

RESUMO

Competitive behaviours of plant growth promoting rhizobacteria (PGPR) are integral to their ability to colonize and persist on plant roots and outcompete phytopathogenic fungi, oomycetes and bacteria. PGPR engage in a range of antagonistic behaviours that have been studied in detail, such as the production and secretion of compounds inhibitory to other microbes. In contrast, their defensive activities that enable them to tolerate exposure to inhibitory compounds produced by their neighbours are less well understood. In this study, the genes involved in the Pseudomonas protegens Pf-5 response to metabolites from eight diverse rhizosphere competitor organisms, Fusarium oxysporum, Rhizoctonia solani, Gaeumannomyces graminis var. tritici, Pythium spinosum, Bacillus subtilis QST713, Pseudomonas sp. Q2-87, Streptomyces griseus and Streptomyces bikiniensis subspecies bikiniensi, were examined. Proximity induced excreted metabolite responses were confirmed for Pf-5 with all partner organisms through HPLC before culturing a dense Pf-5 transposon mutant library adjacent to each of these microbes. This was followed by transposon-directed insertion site sequencing (TraDIS), which identified genes that influence Pf-5 fitness during these competitive interactions. A set of 148 genes was identified that were associated with increased fitness during competition, including cell surface modification, electron transport, nucleotide metabolism, as well as regulatory genes. In addition, 51 genes were identified for which loss of function resulted in fitness gains during competition. These included genes involved in flagella biosynthesis and cell division. Considerable overlap was observed in the set of genes observed to provide a fitness benefit during competition with all eight test organisms, indicating commonalities in the competitive response to phylogenetically diverse micro-organisms and providing new insight into competitive processes likely to take place in the rhizosphere.


Assuntos
Oomicetos , Rizosfera , Bacillus subtilis , Pseudomonas/genética
15.
Microorganisms ; 9(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34835338

RESUMO

Integrons were first identified because of their central role in assembling and disseminating antibiotic resistance genes in commensal and pathogenic bacteria. However, these clinically relevant integrons represent only a small proportion of integron diversity. Integrons are now known to be ancient genetic elements that are hotspots for genomic diversity, helping to generate adaptive phenotypes. This perspective examines the diversity, functions, and activities of integrons within both natural and clinical environments. We show how the fundamental properties of integrons exquisitely pre-adapted them to respond to the selection pressures imposed by the human use of antimicrobial compounds. We then follow the extraordinary increase in abundance of one class of integrons (class 1) that has resulted from its acquisition by multiple mobile genetic elements, and subsequent colonisation of diverse bacterial species, and a wide range of animal hosts. Consequently, this class of integrons has become a significant pollutant in its own right, to the extent that it can now be detected in most ecosystems. As human activities continue to drive environmental instability, integrons will likely continue to play key roles in bacterial adaptation in both natural and clinical settings. Understanding the ecological and evolutionary dynamics of integrons can help us predict and shape these outcomes that have direct relevance to human and ecosystem health.

16.
FEMS Microbiol Ecol ; 97(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34665251

RESUMO

Quantitative traits such as maximum growth rate and cell radial diameter are one facet of ecological strategy variation across bacteria and archaea. Another facet is substrate-use pathways, such as iron reduction or methylotrophy. Here, we ask how these two facets intersect, using a large compilation of data for culturable species and examining seven quantitative traits (genome size, signal transduction protein count, histidine kinase count, growth temperature, temperature-adjusted maximum growth rate, cell radial diameter and 16S rRNA operon copy number). Overall, quantitative trait variation within groups of organisms possessing a particular substrate-use pathway was very broad, outweighing differences between substrate-use groups. Although some substrate-use groups had significantly different means for some quantitative traits, standard deviation of quantitative trait values within each substrate-use pathway mostly averaged between 1.6 and 1.8 times larger than standard deviation across group means. Most likely, this wide variation reflects ecological strategy: for example, fast maximum growth rate is likely to express an early successional or copiotrophic strategy, and maximum growth varies widely within most substrate-use pathways. In general, it appears that these quantitative traits express different and complementary information about ecological strategy, compared with substrate use.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Tamanho do Genoma , Fenótipo , RNA Ribossômico 16S/genética
17.
Commun Biol ; 4(1): 946, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373573

RESUMO

Integrons are bacterial genetic elements that can capture mobile gene cassettes. They are mostly known for their role in the spread of antibiotic resistance cassettes, contributing significantly to the global resistance crisis. These resistance cassettes likely originated from sedentary chromosomal integrons, having subsequently been acquired and disseminated by mobilised integrons. However, their taxonomic and environmental origins are unknown. Here, we use cassette recombination sites (attCs) to predict the origins of those resistance cassettes now spread by mobile integrons. We modelled the structure and sequence homology of 1,978 chromosomal attCs from 11 different taxa. Using these models, we show that at least 27% of resistance cassettes have attCs that are structurally conserved among one of three taxa (Xanthomonadales, Spirochaetes and Vibrionales). Indeed, we found some resistance cassettes still residing in sedentary chromosomal integrons of the predicted taxa. Further, we show that attCs cluster according to host environment rather than host phylogeny, allowing us to assign their likely environmental sources. For example, the majority of ß-lactamases and aminoglycoside acetyltransferases, the two most prevalent resistance cassettes, appear to have originated from marine environments. Together, our data represent the first evidence of the taxonomic and environmental origins of resistance cassettes spread by mobile integrons.


Assuntos
Bactérias/genética , Genoma Bacteriano , Integrons/genética , Filogenia , Homologia de Sequência
18.
Microbiology (Reading) ; 167(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170816

RESUMO

Marine plastic pollution is a growing concern worldwide and has the potential to impact marine life via leaching of chemicals, with zinc (Zn), a common plastic additive, observed at particularly high levels in plastic leachates in previous studies. At this time, however, little is known regarding how elevated Zn affects key groups of marine primary producers. Marine cyanobacterial genera Prochlorococcus and Synechococcus are considered to be some of the most abundant oxygenic phototrophs on earth, and together contribute significantly to oceanic primary productivity. Here we set out to investigate how two Prochlorococcus (MIT9312 and NATL2A) and two Synechococcus (CC9311 and WH8102) strains, representative of diverse ecological niches, respond to exposure to high Zn concentrations. The two genera showed differences in the timing and degree of growth and physiological responses to elevated Zn levels, with Prochlorococcus strains showing declines in their growth rate and photophysiology following exposure to 27 µg l-1 Zn, while Synechococcus CC9311 and WH8102 growth rates declined significantly on exposure to 52 and 152 µg l-1 Zn, respectively. Differences were also observed in each strain's capacity to maintain cell wall integrity on exposure to different levels of Zn. Our results indicate that excess Zn has the potential to pose a challenge to some marine picocyanobacteria and highlights the need to better understand how different marine Prochlorococcus and Synechococcus strains may respond to increasing concentrations of Zn in some marine regions.


Assuntos
Prochlorococcus/efeitos dos fármacos , Synechococcus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Zinco/toxicidade , Prochlorococcus/crescimento & desenvolvimento , Água do Mar/análise , Água do Mar/microbiologia , Synechococcus/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Zinco/análise
19.
Ecol Evol ; 11(9): 3956-3976, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976787

RESUMO

Among bacteria and archaea, maximum relative growth rate, cell diameter, and genome size are widely regarded as important influences on ecological strategy. Via the most extensive data compilation so far for these traits across all clades and habitats, we ask whether they are correlated and if so how. Overall, we found little correlation among them, indicating they should be considered as independent dimensions of ecological variation. Nor was correlation evident within particular habitat types. A weak nonlinearity (6% of variance) was found whereby high maximum growth rates (temperature-adjusted) tended to occur in the midrange of cell diameters. Species identified in the literature as oligotrophs or copiotrophs were clearly separated on the dimension of maximum growth rate, but not on the dimensions of genome size or cell diameter.

20.
Sci Rep ; 11(1): 7252, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33790304

RESUMO

Effective implementation of antibiotic stewardship, especially in critical care, is limited by a lack of direct comparative investigations on how different antibiotics impact the microbiota and antibiotic resistance rates. We investigated the impact of two commonly used antibiotics, third-generation cephalosporins (3GC) and piperacillin/tazobactam (TZP) on the endotracheal, perineal and faecal microbiota of intensive care patients in Australia. Patients exposed to either 3GC, TZP, or no ß-lactams (control group) were sampled over time and 16S rRNA amplicon sequencing was performed to examine microbiota diversity and composition. While neither treatment significantly affected diversity, numerous changes to microbiota composition were associated with each treatment. The shifts in microbiota composition associated with 3GC exposure differed from those observed with TZP, consistent with previous reports in animal models. This included a significant increase in Enterobacteriaceae and Enterococcaceae abundance in endotracheal and perineal microbiota for those administered 3GC compared to the control group. Culture-based analyses did not identify any significant changes in the prevalence of specific pathogenic or antibiotic-resistant bacteria. Exposure to clinical antibiotics has previously been linked to reduced microbiota diversity and increased antimicrobial resistance, but our results indicate that these effects may not be immediately apparent after short-term real-world exposures.


Assuntos
Cefalosporinas/administração & dosagem , Enterobacteriaceae , Microbiota/efeitos dos fármacos , Combinação Piperacilina e Tazobactam/administração & dosagem , Adulto , Animais , Gestão de Antimicrobianos , Estado Terminal , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/crescimento & desenvolvimento , Feminino , Humanos , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...