Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(3): 113932, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38457336

RESUMO

Innate immune cells can undergo long-term functional reprogramming after certain infections, a process called trained immunity (TI). Here, we focus on antigens of Leishmania braziliensis, which induced anti-tumor effects via trained immunity in human monocytes. We reveal that monocytes exposed to promastigote antigens of L. braziliensis develop an enhanced response to subsequent exposure to Toll-like receptor (TLR)2 or TLR4 ligands. Mechanistically, the induction of TI in monocytes by L. braziliensis is mediated by multiple pattern recognition receptors, changes in metabolism, and increased deposition of H3K4me3 at the promoter regions of immune genes. The administration of L. braziliensis exerts potent anti-tumor capabilities by delaying tumor growth and prolonging survival of mice with non-Hodgkin lymphoma. Our work reveals mechanisms of TI induced by L. braziliensis in vitro and identifies its potential for cancer immunotherapy.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Neoplasias , Humanos , Camundongos , Animais , Monócitos
2.
Microb Pathog ; 158: 105088, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34260904

RESUMO

BACKGROUND: Cells of the innate immune system undergo long-term functional reprogramming in response to Bacillus Calmette-Guérin (BCG) exposure via a process called trained immunity, conferring nonspecific protection to unrelated infections. Here, we investigate whether BCG-induced trained immunity is able to protect against infections caused by different Leishmania spp., protozoa that cause cutaneous and mucosal or visceral lesions. METHODS: We used training models of human monocytes with BCG and subsequent infection by L. braziliensis, L. amazonensis and L. infantum, and the vaccination of wild-type and transgenic mice for IL-32γ before in vivo challenge with parasites. RESULTS: We demonstrated that monocytes trained with BCG presented enhanced ability to kill L. braziliensis, L. amazonensis and L. infantum through increased production of reactive oxygen species. Interleukin (IL)-32 appears to play an essential role in the development of trained immunity. Indeed, BCG exposure induced IL-32 production in human primary monocytes, both mRNA and protein. We have used a human IL-32γ transgenic mouse model (IL-32γTg) to study the effect of BCG vaccination in different Leishmania infection models. BCG vaccination decreased lesion size and parasite load in infections caused by L. braziliensis and reduced the spread of L. amazonensis to other organs in both infected wild-type (WT) and IL-32γTg mice. In addition, BCG reduced the parasite load in the spleen, liver and bone marrow of both WT and IL-32γTg mice infected with L. infantum. BCG vaccination increased inflammatory infiltrate in infected tissues caused by different Leishmania spp. In all infections, the presence of IL-32γ was not mandatory, but it increased the protective and inflammatory effects of BCG-induced training. CONCLUSIONS: BCG's ability to train innate immune cells, providing protection against leishmaniasis, as well as the participation of IL-32γ in this process, pave the way for new treatment strategies for this neglected infectious disease.


Assuntos
Vacina BCG , Interleucinas/imunologia , Leishmania , Leishmaniose , Mycobacterium bovis , Animais , Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA