Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 119(1): 99-111, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25882005

RESUMO

AIMS: Saccharomyces cerevisiae does not express any xylose-specific transporters. To enhance the xylose uptake of S. cerevisiae, directed evolution of the Gal2 transporter was performed. METHODS AND RESULTS: Three rounds of error-prone PCR were used to generate mutants with improved xylose-transport characteristics. After developing a fast and reliable high-throughput screening assay based on flow cytometry, eight mutants were obtained showing an improved uptake of xylose compared to wild-type Gal2 out of 41 200 single yeast cells. Gal2 variant 2·1 harbouring five amino acid substitutions showed an increased affinity towards xylose with a faster overall sugar metabolism of glucose and xylose. Another Gal2 variant 3·1 carrying an additional amino acid substitution revealed an impaired growth on glucose but not on xylose. CONCLUSIONS: Random mutagenesis of the S. cerevisiae Gal2 led to an increased xylose uptake capacity and decreased glucose affinity, allowing improved co-consumption. SIGNIFICANCE AND IMPACT OF THE STUDY: Random mutagenesis is a powerful tool to evolve sugar transporters like Gal2 towards co-consumption of new substrates. Using a high-throughput screening system based on flow-through cytometry, various mutants were identified with improved xylose-transport characteristics. The Gal2 variants in this work are a promising starting point for further engineering to improve xylose uptake from mixed sugars in biomass.


Assuntos
Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimologia , Xilose/metabolismo , Transporte Biológico , Evolução Molecular Direcionada , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutagênese , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...