Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 15(10): e1008401, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31626630

RESUMO

Wnt signaling regulates primary body axis formation across the Metazoa, with high Wnt signaling specifying posterior identity. Whether a common Wnt-driven transcriptional program accomplishes this broad role is poorly understood. We identified genes acutely affected after Wnt signaling inhibition in the posterior of two regenerative species, the planarian Schmidtea mediterranea and the acoel Hofstenia miamia, which are separated by >550 million years of evolution. Wnt signaling was found to maintain positional information in muscle and regional gene expression in multiple differentiated cell types. sp5, Hox genes, and Wnt pathway components are down-regulated rapidly after ß-catenin RNAi in both species. Brachyury, a vertebrate Wnt target, also displays Wnt-dependent expression in Hofstenia. sp5 inhibits trunk gene expression in the tail of planarians and acoels, promoting separate tail-trunk body domains. A planarian posterior Hox gene, Post-2d, promotes normal tail regeneration. We propose that common regulation of a small gene set-Hox, sp5, and Brachyury-might underlie the widespread utilization of Wnt signaling in primary axis patterning across the Bilateria.


Assuntos
Padronização Corporal/genética , Genes Homeobox/genética , Planárias/genética , Regeneração/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Desenvolvimento Muscular/genética , Proteínas Nucleares/genética , Planárias/crescimento & desenvolvimento , Proteínas Wnt/genética , Via de Sinalização Wnt/genética
2.
Cell Rep ; 25(9): 2577-2590.e3, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485821

RESUMO

The fundamental requirements for regeneration are poorly understood. Planarians can robustly regenerate all tissues after injury, involving stem cells, positional information, and a set of cellular and molecular responses collectively called the "missing tissue" or "regenerative" response. follistatin, which encodes an extracellular Activin inhibitor, is required for the missing tissue response after head amputation and for subsequent regeneration. We found that follistatin is required for the missing tissue response regardless of the wound context, but causes regeneration failure only after head amputation. This head regeneration failure involves follistatin-mediated regulation of Wnt signaling at wounds and is not a consequence of a diminished missing tissue response. All tested contexts of regeneration, including head regeneration, could occur with a defective missing tissue response, but at a slower pace. Our findings suggest that major cellular and molecular programs induced specifically by large injuries function to accelerate regeneration but are dispensable for regeneration itself.


Assuntos
Planárias/genética , Planárias/fisiologia , Regeneração , Amputação Cirúrgica , Animais , Padronização Corporal , Folistatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabeça , Modelos Biológicos , Planárias/embriologia , Interferência de RNA , Proteína Wnt1/metabolismo
3.
Malar J ; 17(1): 304, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30126436

RESUMO

BACKGROUND: Plasmodium enolase is a target for the growth neutralizing antibodies. Interestingly, the three invasive stages i.e. sporozoites, merozoites, and ookinetes express this protein on their cell surface. Polyclonal anti-Plasmodium falciparum enolase (Pfeno) antibodies disrupt traversal of ookinete through mosquito mid-gut wall as well as have inhibitory effect on parasite growth at erythrocytic stage. In a recent study, it was observed that immunization with a unique epitope of parasite enolase (EWGWS) could confer partial protection against mouse malaria. Further validation is needed for the protective potential of this unique epitope in otherwise highly conserved enolase. METHODS: In order to investigate the efficacy of growth inhibitory potential of the epitope of P falciparum enolase, a monoclonal antibody specific to EWGWS is generated. In vitro parasite growth inhibition assays and passive immunization of Plasmodium yoelii (or Plasmodium berghei) infected mice were used to assess the parasite growth neutralizing activity of the antibody. RESULTS: Screening a panel of monoclonal antibodies raised against recombinant Pfeno that were specific to EWGWS resulted in isolation of H12E1. This antibody recognized only EWGWS epitope containing enolases. H12E1 strongly inhibited parasite growth in culture. This inhibition was strain transcending. Passive infusion of this antibody in P. yoelii or P. berghei infected mice showed significant reduction in parasitemia as compared to controls (p < 0.001). Surface Plasmon Resonance measurements indicated high affinity binding of H12E1 to P. falciparum enolase (KD ~ 7.6 × 10-9M). CONCLUSIONS: A monoclonal antibody directed against EWGWS epitope of Pfeno was shown to inhibit the growth of blood stage malarial parasites. This inhibition was species/strain transcending and is likely to arise due to blockade of enolase on the surface of merozoites, functionally implicating Pfeno in invasion related events. Presence of enolase on the cell surface of merozoites and ookinetes could potentially result in inhibition of host cell invasions at erythrocytic and transmission stages in the parasite life cycle. It is suggested that antibodies against EWGWS epitope have the potential to confer dual stage, species and strain transcending protection against malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Malária/prevenção & controle , Fosfopiruvato Hidratase/imunologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/imunologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antiprotozoários/administração & dosagem , Modelos Animais de Doenças , Imunização Passiva , Malária/imunologia , Masculino , Camundongos , Plasmodium berghei/imunologia , Plasmodium yoelii/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA