Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Vis ; 132(4): 1148-1166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549787

RESUMO

Portrait viewpoint and illumination editing is an important problem with several applications in VR/AR, movies, and photography. Comprehensive knowledge of geometry and illumination is critical for obtaining photorealistic results. Current methods are unable to explicitly model in 3D while handling both viewpoint and illumination editing from a single image. In this paper, we propose VoRF, a novel approach that can take even a single portrait image as input and relight human heads under novel illuminations that can be viewed from arbitrary viewpoints. VoRF represents a human head as a continuous volumetric field and learns a prior model of human heads using a coordinate-based MLP with individual latent spaces for identity and illumination. The prior model is learned in an auto-decoder manner over a diverse class of head shapes and appearances, allowing VoRF to generalize to novel test identities from a single input image. Additionally, VoRF has a reflectance MLP that uses the intermediate features of the prior model for rendering One-Light-at-A-Time (OLAT) images under novel views. We synthesize novel illuminations by combining these OLAT images with target environment maps. Qualitative and quantitative evaluations demonstrate the effectiveness of VoRF for relighting and novel view synthesis, even when applied to unseen subjects under uncontrolled illumination. This work is an extension of Rao et al. (VoRF: Volumetric Relightable Faces 2022). We provide extensive evaluation and ablative studies of our model and also provide an application, where any face can be relighted using textual input.

2.
IEEE Trans Pattern Anal Mach Intell ; 42(2): 357-370, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30334783

RESUMO

In this work, we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is the differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance, and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world datasets feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation. This work is an extended version of [1] , where we additionally present a stochastic vertex sampling technique for faster training of our networks, and moreover, we propose and evaluate analysis-by-synthesis and shape-from-shading refinement approaches to achieve a high-fidelity reconstruction.


Assuntos
Face/anatomia & histologia , Face/diagnóstico por imagem , Imageamento Tridimensional/métodos , Aprendizado de Máquina não Supervisionado , Aprendizado Profundo , Feminino , Humanos , Masculino , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...