Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(3): e0154522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36856430

RESUMO

The outbreak of SARS-CoV-2 has emphasized the need for a deeper understanding of infectivity, spread, and treatment of airborne viruses. Bacteriophages (phages) serve as ideal surrogates for respiratory pathogenic viruses thanks to their high tractability and the structural similarities tailless phages bear to viral pathogens. However, the aerosolization of enveloped SARS-CoV-2 surrogate phi6 usually results in a >3-log10 reduction in viability, limiting its usefulness as a surrogate for aerosolized coronavirus in "real world" contexts, such as a sneeze or cough. Recent work has shown that saliva or artificial saliva greatly improves the stability of viruses in aerosols and microdroplets relative to standard dilution/storage buffers like suspension medium (SM) buffer. These findings led us to investigate whether we could formulate media that preserves the viability of phi6 and other phages in artificially derived aerosols. Results indicate that SM buffer supplemented with bovine serum albumin (BSA) significantly improves the recovery of airborne phi6, MS2, and 80α and outperforms commercially formulated artificial saliva. Particle sizing and acoustic particle trapping data indicate that BSA supplementation dose-dependently improves viral survivability by reducing the extent of particle evaporation. These data suggest that our viral preservation medium may facilitate a lower-cost alternative to artificial saliva for future applied aerobiology studies. IMPORTANCE We have identified common and inexpensive lab reagents that confer increased aerosol survivability on phi6 and other phages. Our results suggest that soluble protein is a key protective component in nebulizing medium. Protein supplementation likely reduces exposure of the phage to the air-water interface by reducing the extent of particle evaporation. These findings will be useful for applications in which researchers wish to improve the survivability of these (and likely other) aerosolized viruses to better approximate highly transmissible airborne viruses like SARS-CoV-2.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , Saliva Artificial , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios
2.
Polym Degrad Stab ; 179: 109251, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32834203

RESUMO

The current COVID-19 pandemic has resulted in globally constrained supplies for face masks and personal protective equipment (PPE). Production capacity is limited in many countries and the future course of the pandemic will likely continue with shortages for high quality masks and PPE in the foreseeable future. Hence, expectations are that mask reuse, extended wear and similar approaches will enhance the availability of personal protective measures. Repeated thermal disinfection could be an important option and likely easier implemented in some situations, at least on the small scale, than UV illumination, irradiation or hydrogen peroxide vapor exposure. An overview on thermal responses and ongoing filtration performance of multiple face mask types is provided. Most masks have adequate material properties to survive a few cycles (i.e. 30 min disinfection steps) of thermal exposure in the 75°C regime. Some are more easily affected, as seen by the fusing of plastic liner or warping, given that preferred conditioning temperatures are near the softening point for some of the plastics and fibers used in these masks. Hence adequate temperature control is equally important. As guidance, disinfectants sprayed via dilute solutions maintain a surface presence over extended time at 25 and 37°C. Some spray-on alcohol-based solutions containing disinfectants were gently applied to the top surface of masks. Neither moderate thermal aging (less than 24 h at 80 and 95°C) nor gentle application of surface disinfectant sprays resulted in measurable loss of mask filter performance. Subject to bio-medical concurrence (additional checks for virus kill efficiency) and the use of low risk non-toxic disinfectants, such strategies, either individually or combined, by offering additional anti-viral properties or short term refreshing, may complement reuse options of professional masks or the now ubiquitous custom-made face masks with their often unknown filtration effectiveness.

3.
J Environ Monit ; 9(7): 666-71, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17607386

RESUMO

Vacuum filter socks were evaluated for recovery efficiency of powdered Bacillus atrophaeus spores from two non-porous surfaces, stainless steel and painted wallboard and two porous surfaces, carpet and bare concrete. Two surface coupons were positioned side-by-side and seeded with aerosolized Bacillus atrophaeus spores. One of the surfaces, a stainless steel reference coupon, was sized to fit into a sample vial for direct spore removal, while the other surface, a sample surface coupon, was sized for a vacuum collection application. Deposited spore material was directly removed from the reference coupon surface and cultured for enumeration of colony forming units (CFU), while deposited spore material was collected from the sample coupon using the vacuum filter sock method, extracted by sonication and cultured for enumeration. Recovery efficiency, which is a measure of overall transfer effectiveness from the surface to culture, was calculated as the number of CFU enumerated from the filter sock sample per unit area relative to the number of CFU enumerated from the co-located reference coupon per unit area. The observed mean filter sock recovery efficiency from stainless steel was 0.29 (SD = 0.14, n = 36), from painted wallboard was 0.25 (SD = 0.15, n = 36), from carpet was 0.28 (SD = 0.13, n = 40) and from bare concrete was 0.19 (SD = 0.14, n = 44). Vacuum filter sock recovery quantitative limits of detection were estimated at 105 CFU m(-2) from stainless steel and carpet, 120 CFU m(-2) from painted wallboard and 160 CFU m(-2) from bare concrete. The method recovery efficiency and limits of detection established in this work provide useful guidance for the planning of incident response environmental sampling for biological agents such as Bacillus anthracis.


Assuntos
Bacillus/isolamento & purificação , Monitoramento Ambiental/métodos , Esporos Bacterianos/isolamento & purificação , Contagem de Colônia Microbiana , Materiais de Construção , Monitoramento Ambiental/instrumentação , Pisos e Cobertura de Pisos , Pintura , Polietileno , Porosidade , Aço Inoxidável , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...