Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(36): 19932-19944, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642457

RESUMO

While the primary use of protein crystals has historically been in crystallographic structure determination, they have recently emerged as promising materials with many advantageous properties such as high porosity, biocompatibility, stability, structural and functional versatility, and genetic/chemical tailorability. Here, we report that the utility of protein crystals as functional materials can be further augmented through their spatial patterning and control of their morphologies. To this end, we took advantage of the chemically and kinetically controllable nature of ferritin self-assembly and constructed core-shell crystals with chemically distinct domains, tunable structural patterns, and morphologies. The spatial organization within ferritin crystals enabled the generation of patterned, multi-enzyme frameworks with cooperative catalytic behavior. We further exploited the differential growth kinetics of ferritin crystal facets to assemble Janus-type architectures with an anisotropic arrangement of chemically distinct domains. These examples represent a step toward using protein crystals as reaction vessels for complex multi-step reactions and broadening their utility as functional, solid-state materials. Our results demonstrate that morphology control and spatial patterning, which are key concepts in materials science and nanotechnology, can also be applied for engineering protein crystals.


Assuntos
Ferritinas , Porinas , Porosidade , Anisotropia , Catálise
2.
J Am Chem Soc ; 145(26): 14208-14214, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37352018

RESUMO

We report a new computational protein design method for the construction of oligomeric protein assemblies around metal centers with predefined coordination geometries. We apply this method to design two homotrimeric assemblies, Tet4 and TP1, with tetrahedral and trigonal-pyramidal tris(histidine) metal coordination geometries, respectively, and demonstrate that both assemblies form the targeted metal centers with ≤0.2 Å accuracy. Although Tet4 and TP1 are constructed from the same parent protein building block, they are distinct in terms of their overall architectures, the environment surrounding the metal centers, and their metal-based reactivities, illustrating the versatility of our approach.


Assuntos
Metaloproteínas , Metaloproteínas/metabolismo , Metais/metabolismo , Histidina
3.
J Phys Chem Lett ; 14(1): 80-87, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36573690

RESUMO

Understanding the basis of templated molecular assembly on a solid surface requires a fundamental comprehension of both short- and long-range aqueous response to the surface under a variety of solution conditions. Herein we provide a detailed picture of how the molecular-scale response to different mica surfaces yields distinct solvent orientations that produce quasi-static directional potentials onto which macromolecules can adsorb. We connect this directionality to observed (a)symmetric epitaxial alignment of designed proteins onto these surfaces, corroborate our findings with 3D atomic force microscopy experiments, and identify slight differences in surface structure as the origin of this effect. Our work provides a detailed picture of the intrinsic electrolyte response in the vicinity of mineral interfaces, with clear predictions for experiment, and highlights the role of solvent on the predictive assembly of hierarchical materials on mineral surfaces.


Assuntos
Proteínas de Transporte , Minerais , Cristalização , Solventes , Microscopia de Força Atômica
4.
J Am Chem Soc ; 144(48): 22101-22112, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36445204

RESUMO

Nitrogenase catalyzes the multielectron reduction of dinitrogen to ammonia. Electron transfer in the catalytic protein (MoFeP) proceeds through a unique [8Fe-7S] cluster (P-cluster) to the active site (FeMoco). In the reduced, all-ferrous (PN) state, the P-cluster is coordinated by six cysteine residues. Upon two-electron oxidation to the P2+ state, the P-cluster undergoes conformational changes in which a highly conserved oxygen-based residue (a Ser or a Tyr) and a backbone amide additionally ligate the cluster. Previous studies of Azotobacter vinelandii (Av) MoFeP revealed that when the oxygen-based residue, ßSer188, was mutated to a noncoordinating residue, Ala, the P-cluster became redox-labile and reversibly lost two of its eight Fe centers. Surprisingly, the Av strain with a MoFeP variant that lacked the serine ligand (Av ßSer188Ala MoFeP) displayed the same diazotrophic growth and in vitro enzyme turnover rates as wild-type Av MoFeP, calling into question the necessity of this conserved ligand for nitrogenase function. Based on these observations, we hypothesized that ßSer188 plays a role in protecting the P-cluster under nonideal conditions. Here, we investigated the protective role of ßSer188 both in vivo and in vitro by characterizing the ability of Av ßSer188Ala cells to grow under suboptimal conditions (high oxidative stress or Fe limitation) and by determining the tendency of ßSer188Ala MoFeP to be mismetallated in vitro. Our results demonstrate that ßSer188 (1) increases Av cell survival upon exposure to oxidative stress in the form of hydrogen peroxide, (2) is necessary for efficient Av diazotrophic growth under Fe-limiting conditions, and (3) may protect the P-cluster from metal exchange in vitro. Taken together, our findings suggest a structural adaptation of nitrogenase to protect the P-cluster via Ser ligation, which is a previously unidentified functional role of the Ser residue in redox proteins and adds to the expanding functional roles of non-Cys ligands to FeS clusters.


Assuntos
Nitrogenase , Serina , Ligantes
5.
Biochemistry ; 61(19): 2063-2072, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36106943

RESUMO

Metals can play key roles in stabilizing protein structures, but ensuring their proper incorporation is a challenge when a metalloprotein is overexpressed in a non-native cellular environment. Here, we have used computational protein design tools to redesign cytochrome b562 (cyt b562), which relies on the binding of its heme cofactor to achieve its proper fold, into a stable, heme-free protein. The resulting protein, ApoCyt, features only four mutations and no metal-ligand or covalent bonds, yet displays improved stability over cyt b562. Mutagenesis studies and X-ray crystal structures reveal that the increase in stability is due to the computationally prescribed mutations, which stabilize the protein fold through a combination of hydrophobic packing interactions, hydrogen bonds, and cation-π interactions. Upon installation of the relevant mutations, ApoCyt is capable of assembling into previously reported, cytochrome-based trimeric and tetrameric assemblies, demonstrating that ApoCyt retains the structure and assembly properties of cyt b562. The successful design of ApoCyt therefore enables further functional diversification of cytochrome-based assemblies and demonstrates that structural metal cofactors can be replaced by a small number of well-designed, non-covalent interactions.


Assuntos
Hemeproteínas , Metaloproteínas , Grupo dos Citocromos b/química , Citocromos b , Heme/química , Ligantes
6.
PLoS Pathog ; 18(9): e1010829, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103556

RESUMO

Multidrug-resistant (MDR) Enterococcus faecalis are major causes of hospital-acquired infections. Numerous clinical strains of E. faecalis harbor a large pathogenicity island that encodes enterococcal surface protein (Esp), which is suggested to promote biofilm production and virulence, but this remains controversial. To resolve this issue, we characterized the Esp N-terminal region, the portion implicated in biofilm production. Small angle X-ray scattering indicated that the N-terminal region had a globular head, which consisted of two DEv-Ig domains as visualized by X-ray crystallography, followed by an extended tail. The N-terminal region was not required for biofilm production but instead significantly strengthened biofilms against mechanical or degradative disruption, greatly increasing retention of Enterococcus within biofilms. Biofilm strengthening required low pH, which resulted in Esp unfolding, aggregating, and forming amyloid-like structures. The pH threshold for biofilm strengthening depended on protein stability. A truncated fragment of the first DEv-Ig domain, plausibly generated by a host protease, was the least stable and sufficient to strengthen biofilms at pH ≤ 5.0, while the entire N-terminal region and intact Esp on the enterococcal surface was more stable and required a pH ≤ 4.3. These results suggested a virulence role of Esp in strengthening enterococcal biofilms in acidic abiotic or host environments.


Assuntos
Infecções por Bactérias Gram-Positivas , Proteínas de Membrana , Proteínas de Bactérias/metabolismo , Biofilmes , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus faecalis , Humanos , Proteínas de Membrana/metabolismo , Peptídeo Hidrolases/metabolismo
7.
J Am Chem Soc ; 144(39): 18090-18100, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154053

RESUMO

Selective metal binding is a key requirement not only for the functions of natural metalloproteins but also for the potential applications of artificial metalloproteins in heterogeneous environments such as cells and environmental samples. The selection of transition-metal ions through protein design can, in principle, be achieved through the appropriate choice and the precise positioning of amino acids that comprise the primary metal coordination sphere. However, this task is made difficult by the intrinsic flexibility of proteins and the fact that protein design approaches generally lack the sub-Å precision required for the steric selection of metal ions. We recently introduced a flexible/probabilistic protein design strategy (MASCoT) that allows metal ions to search for optimal coordination geometry within a flexible, yet covalently constrained dimer interface. In an earlier proof-of-principle study, we used MASCoT to generate an artificial metalloprotein dimer, (AB)2, which selectively bound CoII and NiII over CuII (as well as other first-row transition-metal ions) through the imposition of a rigid octahedral coordination geometry, thus countering the Irving-Williams trend. In this study, we set out to redesign (AB)2 to examine the applicability of MASCoT to the selective binding of other metal ions. We report here the design and characterization of a new flexible protein dimer, B2, which displays ZnII selectivity over all other tested metal ions including CuII both in vitro and in cellulo. Selective, anti-Irving-Williams ZnII binding by B2 is achieved through the formation of a unique trinuclear Zn coordination motif in which His and Glu residues are rigidly placed in a tetrahedral geometry. These results highlight the utility of protein flexibility in the design and discovery of selective binding motifs.


Assuntos
Metaloproteínas , Aminoácidos , Sítios de Ligação , Quelantes , Metaloproteínas/química , Metais/química , Zinco/química
8.
Science ; 377(6608): 865-869, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35901182

RESUMO

The enzyme nitrogenase couples adenosine triphosphate (ATP) hydrolysis to the multielectron reduction of atmospheric dinitrogen into ammonia. Despite extensive research, the mechanistic details of ATP-dependent energy transduction and dinitrogen reduction by nitrogenase are not well understood, requiring new strategies to monitor its structural dynamics during catalytic action. Here, we report cryo-electron microscopy structures of the nitrogenase complex prepared under enzymatic turnover conditions. We observe that asymmetry governs all aspects of the nitrogenase mechanism, including ATP hydrolysis, protein-protein interactions, and catalysis. Conformational changes near the catalytic iron-molybdenum cofactor are correlated with the nucleotide-hydrolysis state of the enzyme.


Assuntos
Molibdoferredoxina , Nitrogenase , Trifosfato de Adenosina/química , Catálise , Microscopia Crioeletrônica , Hidrólise , Molibdoferredoxina/química , Nitrogenase/química , Oxirredução , Conformação Proteica
9.
Chem Commun (Camb) ; 58(49): 6958-6961, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35642584

RESUMO

Herein we describe a designed protein building block whose self-assembly behaviour is dually gated by the redox state of disulphide bonds and the identity of exogenous metal ions. This protein construct is shown - through extensive structural and biophysical characterization - to access five distinct oligomeric states, exemplifying how the complex interplay between hydrophobic, metal-ligand, and reversible covalent interactions could be harnessed to obtain multiple, responsive protein architectures from a single building block.


Assuntos
Metaloproteínas , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Metaloproteínas/química , Metais/química , Oxirredução
10.
J Am Chem Soc ; 144(23): 10139-10144, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35666988

RESUMO

Crystalline materials are increasingly being used as platforms for encapsulating proteins to create stable, functional materials. However, the uptake efficiencies and stimuli-responsiveness of crystalline frameworks are limited by their rigidities. We have recently reported a new form of materials, polymer-integrated crystals (PIX), which combine the structural order of protein crystals with the dynamic, stimuli-responsive properties of synthetic polymers. Here we show that the crystallinity, flexibility, and chemical tunability of PIX can be exploited to encapsulate guest proteins with high loading efficiencies (up to 46% w/w). The electrostatic host-guest interactions enable reversible, pH-controlled uptake/release of guest proteins as well as the mutual stabilization of the host and the guest, thus creating a uniquely synergistic platform toward the development of functional biomaterials and the controlled delivery of biological macromolecules.


Assuntos
Materiais Biocompatíveis , Polímeros , Polímeros/química
11.
Nature ; 603(7901): 522-527, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236987

RESUMO

Selective metal coordination is central to the functions of metalloproteins:1,2 each metalloprotein must pair with its cognate metallocofactor to fulfil its biological role3. However, achieving metal selectivity solely through a three-dimensional protein structure is a great challenge, because there is a limited set of metal-coordinating amino acid functionalities and proteins are inherently flexible, which impedes steric selection of metals3,4. Metal-binding affinities of natural proteins are primarily dictated by the electronic properties of metal ions and follow the Irving-Williams series5 (Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+) with few exceptions6,7. Accordingly, metalloproteins overwhelmingly bind Cu2+ and Zn2+ in isolation, regardless of the nature of their active sites and their cognate metal ions1,3,8. This led organisms to evolve complex homeostatic machinery and non-equilibrium strategies to achieve correct metal speciation1,3,8-10. Here we report an artificial dimeric protein, (AB)2, that thermodynamically overcomes the Irving-Williams restrictions in vitro and in cells, favouring the binding of lower-Irving-Williams transition metals over Cu2+, the most dominant ion in the Irving-Williams series. Counter to the convention in molecular design of achieving specificity through structural preorganization, (AB)2 was deliberately designed to be flexible. This flexibility enabled (AB)2 to adopt mutually exclusive, metal-dependent conformational states, which led to the discovery of structurally coupled coordination sites that disfavour Cu2+ ions by enforcing an unfavourable coordination geometry. Aside from highlighting flexibility as a valuable element in protein design, our results illustrate design principles for constructing selective metal sequestration agents.


Assuntos
Metaloproteínas , Metais , Proteínas , Aminoácidos , Domínio Catalítico , Íons , Metaloproteínas/química , Metais/química , Metais/metabolismo , Proteínas/química
12.
Dalton Trans ; 51(5): 1927-1935, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019931

RESUMO

We report the synthesis and characterization of a new series of permanently porous, three-dimensional metal-organic frameworks (MOFs), M-HAF-2 (M = Fe, Ga, or In), constructed from tetratopic, hydroxamate-based, chelating linkers. The structure of M-HAF-2 was determined by three-dimensional electron diffraction (3D ED), revealing a unique interpenetrated hcb-a net topology. This unusual topology is enabled by the presence of free hydroxamic acid groups, which lead to the formation of a diverse network of cooperative interactions comprising metal-hydroxamate coordination interactions at single metal nodes, staggered π-π interactions between linkers, and H-bonding interactions between metal-coordinated and free hydroxamate groups. Such extensive, multimodal interconnectivity is reminiscent of the complex, noncovalent interaction networks of proteins and endows M-HAF-2 frameworks with high thermal and chemical stability and allows them to readily undergo postsynthetic metal ion exchange (PSE) between trivalent metal ions. We demonstrate that M-HAF-2 can serve as versatile porous materials for ionic separations, aided by one-dimensional channels lined by continuously π-stacked aromatic groups and H-bonding hydroxamate functionalities. As an addition to the small group of hydroxamic acid-based MOFs, M-HAF-2 represents a structural merger between MOFs and hydrogen-bonded organic frameworks (HOFs) and illustrates the utility of non-canonical metal-coordinating functionalities in the discovery of new bonding and topological patterns in reticular materials.

13.
Chem Rev ; 121(22): 13701-13796, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34405992

RESUMO

Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.


Assuntos
Ciência dos Materiais , Proteínas , Proteínas/química
14.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172582

RESUMO

The phyllosilicate mineral muscovite mica is widely used as a surface template for the patterning of macromolecules, yet a molecular understanding of its surface chemistry under varying solution conditions, required to predict and control the self-assembly of adsorbed species, is lacking. We utilize all-atom molecular dynamics simulations in conjunction with an electrostatic analysis based in local molecular field theory that affords a clean separation of long-range and short-range electrostatics. Using water polarization response as a measure of the electric fields that arise from patterned, surface-bound ions that direct the adsorption of charged macromolecules, we apply a Landau theory of forces induced by asymmetrically polarized surfaces to compute protein-surface interactions for two muscovite-binding proteins (DHR10-mica6 and C98RhuA). Comparison of the pressure between surface and protein in high-concentration KCl and NaCl aqueous solutions reveals ion-specific differences in far-field protein-surface interactions, neatly capturing the ability of ions to modulate the surface charge of muscovite that in turn selectively attracts one binding face of each protein over all others.


Assuntos
Proteínas/química , Solventes/química , Silicatos de Alumínio/química , Íons , Microscopia de Força Atômica , Probabilidade , Propriedades de Superfície , Água/química
15.
Nat Protoc ; 16(7): 3264-3297, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34050338

RESUMO

The self-assembly of proteins into sophisticated multicomponent assemblies is a hallmark of all living systems and has spawned extensive efforts in the construction of novel synthetic protein architectures with emergent functional properties. Protein assemblies in nature are formed via selective association of multiple protein surfaces through intricate noncovalent protein-protein interactions, a challenging task to accurately replicate in the de novo design of multiprotein systems. In this protocol, we describe the application of metal-coordinating hydroxamate (HA) motifs to direct the metal-mediated assembly of polyhedral protein architectures and 3D crystalline protein-metal-organic frameworks (protein-MOFs). This strategy has been implemented using an asymmetric cytochrome cb562 monomer through selective, concurrent association of Fe3+ and Zn2+ ions to form polyhedral cages. Furthermore, the use of ditopic HA linkers as bridging ligands with metal-binding protein nodes has allowed the construction of crystalline 3D protein-MOF lattices. The protocol is divided into two major sections: (1) the development of a Cys-reactive HA molecule for protein derivatization and self-assembly of protein-HA conjugates into polyhedral cages and (2) the synthesis of ditopic HA bridging ligands for the construction of ferritin-based protein-MOFs using symmetric metal-binding protein nodes. Protein cages are analyzed using analytical ultracentrifugation, transmission electron microscopy and single-crystal X-ray diffraction techniques. HA-mediated protein-MOFs are formed in sitting-drop vapor diffusion crystallization trays and are probed via single-crystal X-ray diffraction and multi-crystal small-angle X-ray scattering measurements. Ligand synthesis, construction of HA-mediated assemblies, and post-assembly analysis as described in this protocol can be performed by a graduate-level researcher within 6 weeks.


Assuntos
Ácidos Hidroxâmicos/química , Metais/química , Proteínas/química , Área Sob a Curva , Cisteína/química , Ferritinas/química , Ferritinas/ultraestrutura , Ligantes , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/ultraestrutura , Modelos Moleculares , Proteínas/ultraestrutura
16.
Biochemistry ; 60(13): 1050-1062, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32706243

RESUMO

The design and construction of crystalline protein arrays to selectively assemble ordered nanoscale materials have potential applications in sensing, catalysis, and medicine. Whereas numerous designs have been implemented for the bottom-up construction of protein assemblies, the generation of artificial functional materials has been relatively unexplored. Enzyme-directed post-translational modifications are responsible for the functional diversity of the proteome and, thus, could be harnessed to selectively modify artificial protein assemblies. In this study, we describe the use of phosphopantetheinyl transferases (PPTases), a class of enzymes that covalently modify proteins using coenzyme A (CoA), to site-selectively tailor the surface of designed, two-dimensional (2D) protein crystals. We demonstrate that a short peptide (ybbR) or a molecular tag (CoA) can be covalently tethered to 2D arrays to enable enzymatic functionalization using Sfp PPTase. The site-specific modification of two different protein array platforms is facilitated by PPTases to afford both small molecule- and protein-functionalized surfaces with no loss of crystalline order. This work highlights the potential for chemoenzymatic modification of large protein surfaces toward the generation of sophisticated protein platforms reminiscent of the complex landscape of cell surfaces.


Assuntos
Proteínas de Bactérias/metabolismo , Engenharia de Proteínas/métodos , Proteínas/genética , Proteínas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Bacillus subtilis/enzimologia , Coenzima A/metabolismo , Processamento de Proteína Pós-Traducional
17.
J Am Chem Soc ; 142(45): 19402-19410, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124805

RESUMO

The mechanical and functional properties of many crystalline materials depend on cooperative changes in lattice arrangements in response to external perturbations. However, the flexibility and adaptiveness of crystalline materials are limited. Additionally, the bottom-up, molecular-level design of crystals with desired dynamic and mechanical properties at the macroscopic level remains a considerable challenge. To address these challenges, we had previously integrated mesoporous, cubic ferritin crystals with hydrogel networks, resulting in hybrid materials (polymer-integrated crystals or PIX) which could undergo dramatic structural changes while maintaining crystalline periodicity and display efficient self-healing. The dynamics and mechanics of these ferritin-PIX were devoid of directionality, which is an important attribute of many molecular and macroscopic materials/devices. In this study, we report that such directionality can be achieved through the use of ferritin crystals with anisotropic symmetries (rhombohedral or trigonal), which enable the templated formation of patterned hydrogel networks in crystallo. The resulting PIX expand and contract anisotropically without losing crystallinity, undergo prompt bending motions in response to stimuli, and self-heal efficiently, capturing some of the essential features of sophisticated biological devices like skeletal muscles.

18.
J Am Chem Soc ; 142(41): 17265-17270, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32972136

RESUMO

We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.


Assuntos
Ferritinas/química , Estruturas Metalorgânicas/química , Cristalização , Fenômenos Mecânicos , Modelos Moleculares , Transição de Fase , Conformação Proteica , Relação Estrutura-Atividade , Temperatura de Transição , Zinco/química
19.
Angew Chem Int Ed Engl ; 59(49): 21940-21944, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830423

RESUMO

To mimic a hypothetical pathway for protein evolution, we previously tailored a monomeric protein (cyt cb562 ) for metal-mediated self-assembly, followed by re-design of the resulting oligomers for enhanced stability and metal-based functions. We show that a single hydrophobic mutation on the cyt cb562 surface drastically alters the outcome of metal-directed oligomerization to yield a new trimeric architecture, (TriCyt1)3. This nascent trimer was redesigned into second and third-generation variants (TriCyt2)3 and (TriCyt3)3 with increased structural stability and preorganization for metal coordination. The three TriCyt variants combined furnish a unique platform to 1) provide tunable coupling between protein quaternary structure and metal coordination, 2) enable the construction of metal/pH-switchable protein oligomerization motifs, and 3) generate a robust metal coordination site that can coordinate all mid-to-late first-row transition-metal ions with high affinity.


Assuntos
Metaloproteínas/síntese química , Metais Pesados/química , Interações Hidrofóbicas e Hidrofílicas , Metaloproteínas/química , Modelos Moleculares
20.
Nat Commun ; 11(1): 3770, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724112

RESUMO

Self-assembly of molecular building blocks into higher-order structures is exploited in living systems to create functional complexity and represents a powerful strategy for constructing new materials. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions. Yet, control of protein self-assembly has been limited compared to inorganic or polymeric nanoparticles, which lack such attributes. Here, we report modular self-assembly of an engineered protein into four physicochemically distinct, precisely patterned 2D crystals via control of four classes of interactions spanning Ångström to several-nanometer length scales. We relate the resulting structures to the underlying free-energy landscape by combining in-situ atomic force microscopy observations of assembly with thermodynamic analyses of protein-protein and -surface interactions. Our results demonstrate rich phase behavior obtainable from a single, highly patchy protein when interactions acting over multiple length scales are exploited and predict unusual bulk-scale properties for protein-based materials that ensue from such control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...