Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Chem Phys ; 160(20)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38775743

RESUMO

Small molecule inhibitors (SMIs) have been gaining attention in the field of area-selective atomic layer deposition (ALD) because they can be applied in the vapor-phase. A major challenge for SMIs is that vapor-phase application leads to a disordered inhibitor layer with lower coverage as compared to self-assembled monolayers, SAMs. A lower coverage of SMIs makes achieving high selectivity for area-selective ALD more challenging. To overcome this challenge, mechanistic understanding is required for the formation of SMI layers and the resulting precursor blocking. In this study, reflection adsorption infrared spectroscopy measurements are used to investigate the performance of aniline as an SMI. Our results show that aniline undergoes catalytic surface reactions, such as hydrogenolysis, on a Ru non-growth area at substrate temperatures above 250 °C. At these temperatures, a greatly improved selectivity is observed for area-selective TaN ALD using aniline as an inhibitor. The results suggest that catalytic surface reactions of the SMI play an important role in improving precursor blocking, likely through the formation of a more carbon-rich inhibitor layer. More prominently, catalytic surface reactions can provide a new strategy for forming inhibitor layers that are otherwise very challenging or impossible to form directly through vapor-phase application.

2.
J Comput Chem ; 43(26): 1793-1801, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36054551

RESUMO

In this work, various precious and non-precious metals reported in the literature as the most effective catalysts for glucose electrooxidation reaction were investigated by the density functional theory (DFT) approach in order to reveal the mechanisms taking place over the catalysts in the fuel cell. The use of a single-atom catalyst model was adopted by insertion of one Au, Cu, Ni, Pd, Pt, and Zn metal atom on the pyridinic N atoms doped graphene surface (NG). ß form of d-glucose in alkaline solution was used to determine the reaction mechanism and intermediates that formed during the reaction. DFT results showed that the desired glucono-lactone was formed on the Cu-3NG electrode in a single-step reaction pathway whereas it was produced via different two-step pathways on the Au and Pt-3NG electrodes. Although the interaction of glucose with Ni, Pd, and Zn-doped surfaces resulted in the deprotonation of the molecule, lactone product formation did not occur on these electrode surfaces. When the calculation results are evaluated in terms of energy content and product formation, it can be concluded that Cu, Pt, and especially Au doped graphene catalysts are effective for direct glucose oxidation in fuel cells reactor.


Assuntos
Grafite , Catálise , Teoria da Densidade Funcional , Eletrodos , Glucose
3.
J Phys Chem Lett ; 12(17): 4160-4165, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33890796

RESUMO

It is a present-day challenge to design and develop oxygen-permeable solid oxide fuel cell (SOFC) electrode and electrolyte materials that operate at low temperatures. Herein, by performing high-throughput density functional theory calculations, oxygen vacancy formation energy, Evac, data for a pool of all-inorganic ABO3 and AI0.5AII0.5BO3 cubic perovskites is generated. Using Evac data of perovskites, the area-specific resistance (ASR) data, which is related to both oxygen reduction reaction activity and selective oxygen ion conductivity of materials, is calculated. Screening a total of 270 chemical compositions, 31 perovskites are identified as candidates with properties that are between those of state-of-the-art SOFC cathode and oxygen permeation components. In addition, an intuitive approach to estimate Evac and ASR data of complex perovskites by using solely the easy-to-access data of simple perovskites is shown, which is expected to boost future explorations in the perovskite material search space for genuinely diverse energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA