Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evolution ; 78(2): 284-299, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952211

RESUMO

The role of hybridization in morphological diversification is a fundamental topic in evolutionary biology. However, despite the accumulated knowledge on adult hybrid variation, how hybridization affects ontogenetic allometry is less well understood. Here, we investigated the effects of hybridization on postnatal ontogenetic allometry in the skulls of a putative hybrid population of introduced Taiwanese macaques (Macaca cyclopis) and native Japanese macaques (Macaca fuscata). Genomic analyses indicated that the population consisted of individuals with varying degrees of admixture, formed by male migration from Japanese to Taiwanese macaques. For overall skull shape, ontogenetic trajectories were shifted by hybridization in a nearly additive manner, with moderate transgressive variation observed throughout development. In contrast, for the maxillary sinus (hollow space in the face), hybrids grew as fast as Taiwanese macaques, diverging from Japanese macaques, which showed slow growth. Consequently, adult hybrids showed a mosaic pattern, that is, the maxillary sinus is as large as that of Taiwanese macaques, while the overall skull shape is intermediate. Our findings suggest that the transgressive variation can be caused by prenatal shape modification and nonadditive inheritance on regional growth rates, highlighting the complex genetic and ontogenetic bases underlying hybridization-induced morphological diversification.


Assuntos
Macaca fuscata , Crânio , Animais , Masculino , Crânio/anatomia & histologia , Macaca/anatomia & histologia , Macaca/genética , Evolução Biológica
2.
Plant Cell Environ ; 45(8): 2410-2427, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35610174

RESUMO

The differences between plants grown in field and in controlled environments have long been recognized. However, few studies have addressed the underlying molecular mechanisms. To evaluate plant responses to fluctuating environments using laboratory equipment, we developed SmartGC, a high-performance growth chamber that reproduces the fluctuating irradiance, temperature and humidity of field environments. We analysed massive transcriptome data of rice plants grown under field and SmartGC conditions to clarify the differences in plant responses to field and controlled environments. Rice transcriptome dynamics in SmartGC mimicked those in the field, particularly during the morning and evening but those in conventional growth chamber conditions did not. Further analysis revealed that fluctuation of irradiance affects transcriptome dynamics in the morning and evening, while fluctuation of temperature affects transcriptome dynamics only in the morning. We found upregulation of genes related to biotic and abiotic stress, and their expression was affected by environmental factors that cannot be mimicked by SmartGC. Our results reveal fillable and unfillable gaps in the transcriptomes of rice grown in field and controlled environments and can accelerate the understanding of plant responses to field environments for both basic biology and agricultural applications.


Assuntos
Oryza , Transcriptoma , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Plantas/genética , Estresse Fisiológico/genética , Temperatura , Transcriptoma/genética
3.
PLoS One ; 17(3): e0265994, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35349601

RESUMO

When used in closed-type plant factories, light-emitting diode (LED) illumination systems have the particular advantages of low heat emission and high luminous efficiency. The effects of illumination quality and intensity on the growth and morphogenesis of many plant species have been examined, but improvements are needed to optimize the illumination systems for better plant products with lower resource investments. In particular, new strategies are needed to reduce the wastage of plant products related to leaf senescence, and to better control the ingredients and appearance of leafy vegetables. Although the quality of light is often altered to change the characteristics of plant products, the transcriptional status underlying the physiological responses of plants to light has not been established. Herein, we performed a comprehensive gene expression analysis using RNA-sequencing to determine how red, blue, and red/blue LEDs and fluorescent light sources affect transcriptome involved in the leaf aging of leaf lettuce. The RNA-sequencing profiling revealed clear differences in the transcriptome between young and old leaves. Red LED light caused large variation between the two age classes, while a pure or mixed blue LED light spectrum induced fewer transcriptome differences between young and old leaves. Collectively, the expression levels of genes that showed homology with those of other model organisms provide a detailed physiological overview, incorporating such characteristics as the senescence, nutrient deficiency, and anthocyanin synthesis of the leaf lettuce plants. Our findings suggest that transcriptome profiles of leaf lettuce grown under different light sources provide helpful information to achieve better growth conditions for marketable and efficient green-vegetable production, with improved wastage control and efficient nutrient inputs.


Assuntos
Lactuca , Transcriptoma , Nutrientes , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA/metabolismo
4.
Plant Cell Environ ; 45(6): 1749-1764, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35348214

RESUMO

Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.


Assuntos
Populus , Floema/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Folhas de Planta/metabolismo , Populus/metabolismo , Árvores/metabolismo , Xilema/metabolismo
6.
Ecol Evol ; 11(11): 6962-6976, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34141268

RESUMO

Latitude is correlated with environmental components that determine the distribution of biodiversity. In combination with geographic factors, latitude-associated environmental variables are expected to influence speciation, but empirical evidence on how those factors interplay is scarce. We evaluated the genetic and environmental variation among populations in the pair of sister species Dioon sonorense-D. vovidesii, two cycads distributed along a latitudinal environmental gradient in northwestern Mexico, to reveal their demographic histories and the environmental factors involved in their divergence. Using genome-wide loci data, we determined the species delimitation, estimated the gene flow, and compared multiple demographic scenarios of divergence. Also, we estimated the variation of climatic variables among populations and used ecological niche models to test niche overlap between species. The effect of geographic and environmental variables on the genetic variation among populations was evaluated using linear models. Our results suggest the existence of a widespread ancestral population that split into the two species ~829 ky ago. The geographic delimitation along the environmental gradient occurs in the absence of major geographic barriers, near the 28th parallel north, where a zonation of environmental seasonality exists. The northern species, D. vovidesii, occurs in more seasonal environments but retains the same niche of the southern species, D. sonorense. The genetic variation throughout populations cannot be solely explained by stochastic processes; the latitudinal-associated seasonality has been an additive factor that strengthened the species divergence. This study represents an example of how speciation can be achieved by the effect of the latitude-associated factors on the genetic divergence among populations.

7.
Plant Cell Physiol ; 62(9): 1436-1445, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34131748

RESUMO

How genetic variations affect gene expression dynamics of field-grown plants remains unclear. Expression quantitative trait loci (eQTL) analysis is frequently used to find genomic regions underlying gene expression polymorphisms. This approach requires transcriptome data for the complete set of the QTL mapping population under the given conditions. Therefore, only a limited range of environmental conditions is covered by a conventional eQTL analysis. We sampled sparse time series of field-grown rice from chromosome segment substitution lines (CSSLs) and conducted RNA sequencing (RNA-Seq). Then, by using statistical analysis integrating meteorological data and the RNA-Seq data, we identified 1,675 eQTLs leading to polymorphisms in expression dynamics under field conditions. A genomic region on chromosome 11 influences the expression of several defense-related genes in a time-of-day- and scaled-age-dependent manner. This includes the eQTLs that possibly influence the time-of-day- and scaled-age-dependent differences in the innate immunity between Koshihikari and Takanari. Based on the eQTL and meteorological data, we successfully predicted gene expression under environments different from training environments and in rice cultivars with more complex genotypes than the CSSLs. Our novel approach of eQTL identification facilitated the understanding of the genetic architecture of expression dynamics under field conditions, which is difficult to assess by conventional eQTL studies. The prediction of expression based on eQTLs and environmental information could contribute to the understanding of plant traits under diverse field conditions.


Assuntos
Genoma de Planta , Oryza/genética , Transcriptoma , Genômica , Oryza/metabolismo
8.
Sci Rep ; 11(1): 3124, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542454

RESUMO

Evolution of mating systems has become one of the most important research areas in evolutionary biology. Cyrtomium falcatum is a homosporous fern species native to eastern Asia. Two subspecies belonging to a sexual diploid race of C. falcatum are recognized: subsp. littorale and subsp. australe. Subspecies littorale shows intermediate selfing rates, while subsp. australe is an obligate outcrosser. We aimed to evaluate the process of mating system evolution and divergence for the two subspecies using restriction site associated DNA sequencing (RAD-seq). The results showed that subsp. littorale had lower genetic diversity and stronger genetic drift than subsp. australe. Fluctuations in the effective population size over time were evaluated by extended Bayesian skyline plot and Stairway plot analyses, both of which revealed a severe population bottleneck about 20,000 years ago in subsp. littorale. This bottleneck and the subsequent range expansion after the LGM appear to have played an important role in the divergence of the two subspecies and the evolution of selfing in subsp. littorale. These results shed new light on the relationship between mating system evolution and past demographic change in fern species.


Assuntos
Evolução Biológica , Cruzamentos Genéticos , Gleiquênias/genética , Filogenia , Teorema de Bayes , Diploide , Gleiquênias/classificação , Deriva Genética , Variação Genética , Japão , Densidade Demográfica , Análise de Componente Principal , Reprodução
9.
Evolution ; 75(1): 176-194, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33165944

RESUMO

Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Hibridização Genética , Perciformes/genética , Animais , Japão , Filogeografia , Análise de Sequência de RNA
10.
New Phytol ; 227(5): 1434-1452, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32343414

RESUMO

Increase in the nitrogen (N)-use efficiency and optimization of N response in crop species are urgently needed. Although transcription factor-based genetic engineering is a promising approach for achieving these goals, transcription factors that play key roles in the response to N deficiency have not been studied extensively. Here, we performed RNA-seq analysis of root samples of 20 Asian rice (Oryza sativa) accessions with differential nutrient uptake. Data obtained from plants exposed to N-replete and N-deficient conditions were subjected to coexpression analysis and machine learning-based pathway inference to dissect the gene regulatory network required for the response to N deficiency. Four transcription factors, including members of the G2-like and bZIP families, were predicted to function as key regulators of gene transcription within the network in response to N deficiency. Cotransfection assays validated inferred novel regulatory pathways, and further analyses using genome-edited knockout lines suggested that these transcription factors are important for N-deficiency responses in planta. Many of the N deficiency-responsive genes, including those encoding key regulators within the network, were coordinately regulated by transcription factors belonging to different families. Transcription factors identified in this study could be valuable for the modification of N response and metabolism.


Assuntos
Oryza , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Nitrogênio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Bio Protoc ; 10(12): e3496, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659317

RESUMO

RNA-Seq is a powerful method for transcriptome analysis used in varied field of biology. Although several commercial products and hand-made protocols enable us to prepare RNA-Seq library from total RNA, their cost are still expensive. Here, we established a low-cost and multiplexable whole mRNA-Seq library preparation method for illumine sequencers. In order to reduce cost, we used cost-effective and robust commercial regents with small reaction volumes. This method is a whole mRNA-Seq, which can be applied even to non-model organisms lacking the transcriptome references. In addition, we designed large number of 3' PCR primer including 8 nucleotides barcode sequences for multiplexing up to three hundreds samples. To summarize, it is possible with this protocol to prepare 96 directional RNA-Seq libraries from purified total RNA in three days and can be pooled for up to three hundred libraries. This is beneficial for large scale transcriptome analysis in many fields of animals and plant biology.

12.
Front Genet ; 10: 787, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572432

RESUMO

Recently, increasing attempts have been made to understand how plant genes function in natura. In this context, transcriptional profiles represent plant physiological status in response to environmental stimuli. Herein, we combined high-throughput RNA-Seq with insect survey data on 19 accessions of Arabidopsis thaliana grown at a field site in Switzerland. We found that genes with the gene ontology (GO) annotations of "glucosinolate biosynthetic process" and "response to insects" were most significantly enriched, and the expression of these genes was highly variable among plant accessions. Nearly half of the total expression variation in the glucosinolate biosynthetic genes (AOPs, ESM1, ESP, and TGG1) was explained by among-accession variation. Of these genes, the expression level of AOP3 differed among Col-0 accession individuals depending on the abundance of the mustard aphid (Lipaphis erysimi). We also found that the expression of the major cis-jasmone activated gene CYP81D11 was positively correlated with the number of flea beetles (Phyllotreta striolata and Phyllotreta atra). Combined with the field RNA-Seq data, bioassays confirmed that AOP3 was up-regulated in response to attack by mustard aphids. The combined results from RNA-Seq and our ecological survey illustrate the feasibility of using field transcriptomics to detect an inducible defense, providing a first step towards an in natura understanding of biotic interactions involving phenotypic plasticity.

13.
J Exp Bot ; 70(19): 5287-5297, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257443

RESUMO

Leaves within crop canopies experience variable light over the course of a day, which greatly affects photosynthesis and crop productivity. Little is known about the mechanisms of the photosynthetic response to fluctuating light and their genetic control. Here, we examined gas exchange, metabolite levels, and chlorophyll fluorescence during the photosynthetic induction response in an Oryza sativa indica cultivar with high yield (Takanari) and a japonica cultivar with lower yield (Koshihikari). Takanari had a faster induction response to sudden increases in light intensity than Koshihikari, as demonstrated by faster increases in net CO2 assimilation rate, stomatal conductance, and electron transport rate. In a simulated light regime that mimicked a typical summer day, the faster induction response in Takanari increased daily CO2 assimilation by 10%. The faster response of Takanari was explained in part by its maintenance of a larger pool of Calvin-Benson cycle metabolites. Together, the rapid responses of electron transport rate, metabolic flux, and stomatal conductance in Takanari contributed to the greater daily carbon gain under fluctuating light typical of natural environments.


Assuntos
Luz , Oryza/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/efeitos da radiação , Folhas de Planta/efeitos da radiação
14.
J Equine Sci ; 30(2): 33-40, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31285691

RESUMO

Taishu horses are a native Japanese breed, of which only 41 individuals remained on Tsushima Island in 2018. Their genetic diversity is considered lower than that of other Japanese native horse breeds; thus, it needs to be investigated for sustainable conservation of this breed. Historical records revealed that several Taishu individuals were released areas off-Tsushima Island in mid-1980s. At present, Taishu horses living outside of Tsushima Island, hereafter referred to as Non-Tsushima Taishus (NTTs), are tagged. However, the genetic structure of the NTT individuals remains unclear, and such individuals are not included in the current mating plans for Taishu horses. Herein, we examined the genetic structure of 18 NTT individuals by comparing their genomic (SNP) information with that of individuals on Tsushima Island (TT), four other native Japanese breeds, and one Anglo-Arabian breed by using ddRAD-seq. We found that all individuals related to the Taishu can be grouped in one cluster, which was separated from other horse breeds. Patterns of specific and shared SNPs in NTT individuals closely resembled those of TT individuals, suggesting very minor genetic differences. Meanwhile, the heterozygosity of NTT individuals was slightly higher than that of TT individuals, and many NTT individuals were of fertile age, suggesting that the pedigree of NTT individuals would be useful in breed conservation plans for Taishu horses. Based on their genomic information, we also reconstructed the pedigree structures of four NTT individuals with no family information. The inclusion of NTT individuals in future mating plans on Tsushima Island may be an effective and feasible method for conserving the Taishu horse breed in Japan.

15.
Science ; 364(6443): 886-889, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31147520

RESUMO

Colonization of new ecological niches has triggered large adaptive radiations. Although some lineages have made use of such opportunities, not all do so. The factors causing this variation among lineages are largely unknown. Here, we show that deficiency in docosahexaenoic acid (DHA), an essential ω-3 fatty acid, can constrain freshwater colonization by marine fishes. Our genomic analyses revealed multiple independent duplications of the fatty acid desaturase gene Fads2 in stickleback lineages that subsequently colonized and radiated in freshwater habitats, but not in close relatives that failed to colonize. Transgenic manipulation of Fads2 in marine stickleback increased their ability to synthesize DHA and survive on DHA-deficient diets. Multiple freshwater ray-finned fishes also show a convergent increase in Fads2 copies, indicating its key role in freshwater colonization.


Assuntos
Adaptação Biológica/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/genética , Água Doce , Duplicação Gênica , Smegmamorpha/fisiologia , Animais , Dosagem de Genes , Água do Mar , Smegmamorpha/genética , Smegmamorpha/metabolismo
16.
Biol Lett ; 15(5): 20180577, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31138096

RESUMO

Grassland ecosystems worldwide have been extensively converted to other land uses and are globally imperiled. Because many grasslands have been maintained by human activities, understanding their origin and history is fundamentally important to better contemporary management. However, existing methods to reconstruct past vegetation can produce contrasting views on grassland history. Here, we inferred demographic histories of 40 populations of four grassland forb species throughout Japan using high-resolution genome sequences and model-flexible demographic simulation based on the site frequency spectrum. Although two species showed a slight decline in population size between 100 000-10 000 years ago, our results suggest that population sizes of studied species have been maintained within the range of 0.5-2.0 times the most recent estimates for at least 100 000 years across Japan. Our results suggest that greater than 90% declines in Japanese grasslands and subsequent losses of grassland species in the last 100 years are geologically and biologically important and will have substantial consequences for Japanese biota and culture. People have had critical roles in maintaining disturbance-dependent grassland ecosystems and biota in this warm and wet forested country. In these contexts, disturbances associated with forest harvesting and traditional extensive farming have the potential to maintain grassland ecosystems and can provide important opportunities to reconcile resource production and conservation of grassland biodiversity.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Conservação dos Recursos Naturais , Florestas , Genômica , Japão , Dinâmica Populacional
17.
Sci Rep ; 9(1): 7091, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068632

RESUMO

RNA-Seq is a whole-transcriptome analysis method used to research biological mechanisms and functions but its use in large-scale experiments is limited by its high cost and labour requirements. In this study, we have established a high-throughput and cost-effective RNA-Seq library preparation method that does not require mRNA enrichment. The method adds unique index sequences to samples during reverse transcription (RT) that is conducted at a higher temperature (≥62 °C) to suppress RT of A-rich sequences in rRNA, and then pools all samples into a single tube. Both single-read and paired-end sequencing of libraries is enabled. We found that the pooled RT products contained large amounts of RNA, mainly rRNA, causing over-estimations of the quantity of DNA and unstable tagmentation results. Degradation of RNA before tagmentation was found to be necessary for the stable preparation of libraries. We named this protocol low-cost and easy RNA-Seq (Lasy-Seq) and used it to investigate temperature responses in Arabidopsis thaliana. We analysed how sub-ambient temperatures (10-30 °C) affected the plant transcriptomes using time-courses of RNA-Seq from plants grown in randomly fluctuating temperature conditions. Our results suggest that there are diverse mechanisms behind plant temperature responses at different time scales.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , RNA de Plantas/genética , RNA-Seq/métodos , Temperatura , Adaptação Fisiológica/genética , DNA de Plantas/genética , Biblioteca Gênica , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Ribossômico/genética , Transcrição Reversa/genética , Transcriptoma
18.
G3 (Bethesda) ; 9(5): 1655-1662, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30894452

RESUMO

Transgressive segregation produces hybrid progeny phenotypes that exceed the parental phenotypes. Unlike heterosis, extreme phenotypes caused by transgressive segregation are heritably stable. We examined transgressive phenotypes of flowering time in rice, and revealed transgressive segregation in F2 populations derived from a cross between parents with similar (proximal) days to heading (DTH). The DTH phenotypes of the A58 × Kitaake F2 progenies were frequently more extreme than those of either parent. These transgressive phenotypes were maintained in the F3 and F4 populations. Both A58 and Kitaake are japonica rice cultivars adapted to Hokkaido, Japan, which is a high-latitude region, and have a short DTH. Among the four known loci required for a short DTH, three loci had common alleles in A58 and Kitaake, implying there is a similar genetic basis for DTH between the two varieties. A genome-wide single nucleotide polymorphism (SNP) analysis based on the F4 population identified five new quantitative trait loci (QTL) associated with transgressive DTH phenotypes. Each of these QTL had different degrees of additive effects on DTH, and two QTL had an epistatic effect on each other. Thus, a genome-wide SNP analysis facilitated the detection of genetic loci associated with extreme DTH phenotypes, and revealed that the transgressive phenotypes were produced by exchanging the complementary alleles of a few minor QTL in the similar parental phenotypes.


Assuntos
Cruzamentos Genéticos , Hibridização Genética , Oryza/genética , Fenótipo , Melhoramento Vegetal , Alelos , Sequência de Bases , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
19.
Mar Environ Res ; 140: 104-113, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29895505

RESUMO

Using genome-wide SNP data obtained from high-throughput techniques based on double digest restriction site-associated DNA sequencing (ddRAD-seq), we elucidated the migration history and genetic diversity of the Japanese population of the ecologically important brown seaweed Sargassum thunbergii (Mertens ex Roth) Kuntze. STRUCTURE and NeighborNet analyses showed a clear genetic differentiation among populations of four geographic regions: Kyushu (POP1); Sea of Japan (POP2); Hokkaido and Tohoku (POP3); and Pacific coast from Kyushu to Kanto (POP4). Approximate Bayesian Computation (ABC) analysis indicated that POP4 diverged first, followed by the separation between POP2 (the largest effective population size) and POP3; POP1 was the last to form, shaped by the mixture of POP2 (73%) and POP4 (27%). High genetic diversity was detected in POP1 and POP2, whereas low genetic diversity was detected in POP3 and POP4. These results indicated that S. thunbergii populations of Kyushu and the Sea of Japan might have been maintained as large and stable populations gathered different lineages from China, Korea and/or Japan.


Assuntos
Phaeophyceae/genética , Filogeografia , Teorema de Bayes , Monitoramento Ambiental , Variação Genética , Japão , Filogenia , Sargassum , Análise de Sequência de DNA , Estramenópilas
20.
Sci Rep ; 8(1): 8339, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844539

RESUMO

Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.


Assuntos
Sequência de Bases/genética , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Redes Reguladoras de Genes/genética , Funções Verossimilhança , Modelos Estatísticos , Distribuição Normal , RNA/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...