Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 239: 169-178, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653307

RESUMO

Intensification of farming and an increase in motorised traffic have led to elevated nitrogen (N) emissions and thus to eutrophication of the environment, which threatens the nutrient balance in ecosystems. Earlier studies have demonstrated the suitability of mosses as biomonitors for measuring N deposition by comparing the N concentration in moss with that in precipitation. In our study however, we extended the comparison to the dry deposition of gases (nitrogen dioxide, nitric acid, ammonia) and aerosols (nitrate, ammonium), which, together with the N in precipitation, represent the main contributions to total N deposition. The aim of including several N compounds was to see whether the correlation with the N concentration in moss could be improved. We determined total N input from the atmosphere to the ecosystem at 24 sites in Switzerland and compared this value to the N concentration in two moss species collected <1000 m from these sites. Including the gases and aerosols improved the correlation between the N concentration in moss and N deposition. Ammonia was found to be the most important of the additionally included compounds at these sites. Especially at sites with a relatively high ammonia concentration in the air, the inclusion of ammonia improved the correlation of the comparison. We also demonstrate that the particular moss species tested had no influence on the correlation between N in moss and total N deposition. Our data supports the suitability of mosses as biomonitors for estimating N input into ecosystems.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Compostos de Amônio/análise , Briófitas/química , Monitoramento Ambiental/métodos , Nitratos/análise , Ácido Nítrico/análise , Dióxido de Nitrogênio/análise , Nitrogênio/análise , Ecossistema , Suíça
3.
Environ Sci Pollut Res Int ; 23(11): 10457-10476, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27068915

RESUMO

For analysing element input into ecosystems and associated risks due to atmospheric deposition, element concentrations in moss provide complementary and time-integrated data at high spatial resolution every 5 years since 1990. The paper reviews (1) minimum sample sizes needed for reliable, statistical estimation of mean values at four different spatial scales (European and national level as well as landscape-specific level covering Europe and single countries); (2) trends of heavy metal (HM) and nitrogen (N) concentrations in moss in Europe (1990-2010); (3) correlations between concentrations of HM in moss and soil specimens collected across Norway (1990-2010); and (4) canopy drip-induced site-specific variation of N concentration in moss sampled in seven European countries (1990-2013). While the minimum sample sizes on the European and national level were achieved without exception, for some ecological land classes and elements, the coverage with sampling sites should be improved. The decline in emission and subsequent atmospheric deposition of HM across Europe has resulted in decreasing HM concentrations in moss between 1990 and 2010. In contrast, hardly any changes were observed for N in moss between 2005, when N was included into the survey for the first time, and 2010. In Norway, both, the moss and the soil survey data sets, were correlated, indicating a decrease of HM concentrations in moss and soil. At the site level, the average N deposition inside of forests was almost three times higher than the average N deposition outside of forests.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Poluição Ambiental/análise , Metais Pesados/análise , Nitrogênio/análise , Ecossistema , Europa (Continente) , Medição de Risco
4.
Sci Total Environ ; 538: 600-10, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26318813

RESUMO

High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Atmosfera/química , Ecossistema , Europa (Continente) , Florestas , Árvores
5.
Environ Pollut ; 194: 50-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25094057

RESUMO

To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha(-1) yr(-1). The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale.


Assuntos
Poluentes Atmosféricos/análise , Briófitas/química , Monitoramento Ambiental/métodos , Nitrogênio/análise , Atmosfera/química , Europa (Continente) , Nitratos/análise , Chuva
6.
Environ Pollut ; 151(2): 377-88, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17673343

RESUMO

This study aimed at cross-border mapping metal loads in mosses in eight European countries in 1990, 1995, and 2000 and at investigating confounding factors. Geostatistics was used for mapping, indicating high local variances but clear spatial autocorrelations. Inference statistics identified differences of metal concentrations in mosses on both sides of the national borders. However, geostatistical analyses did not ascertain discontinuities of metal concentrations in mosses at national borders due to sample analysis in different laboratories applying a range of analytical techniques. Applying Classification and Regression Trees (CART) to the German moss data as an example, the local variation in metal concentrations in mosses were proved to depend mostly on different moss species, potential local emission sources, canopy drip and precipitation.


Assuntos
Briófitas/metabolismo , Poluentes Ambientais/metabolismo , Metais/metabolismo , Altitude , Briófitas/química , Fatores de Confusão Epidemiológicos , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Europa (Continente) , Sistemas de Informação Geográfica , Laboratórios , Metais/análise , Modelos Estatísticos , Oceanos e Mares , Chuva , Especificidade da Espécie
7.
Environ Monit Assess ; 138(1-3): 207-18, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17562202

RESUMO

This study presents the results of the analyses of Cd, Pb, cations and anions present in precipitation and dust at a pre-alpine and a suburban site in Switzerland in the period from 1988 to 2003. The aim of these measurements was to monitor the success of measures taken to diminish pollutant emissions. No change was found for Ca2+, K+, Na+ and Mg2+ loads--in line with expectations, as no reducing measures had been taken. Statistically significant and largely decreasing values (50-90%) were found for Cl- and Cd (linked to the fitting of filters in incineration plants), Pb (unleaded petrol), SO(2-)4 (diminishing the use of mineral oil with high S content), and the proton (lower HCl and SO2 emissions). A smaller decrease (up to 30%) or none was registered for oxidised nitrogen components (fitting cars with catalytic converters, but an increase in numbers of cars and trucks). No significant change was found for NH3 as farming techniques had undergone no major changes. The long-term measurements show that the measures taken to reduce emissions were successful. A shorter monitoring period would have been misleading owing to data variability and temporary incidents e.g. amount of precipitation.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Chuva/química , Amônia/análise , Cloretos/análise , Monitoramento Ambiental , Metais/análise , Nitratos/análise , Ácido Nítrico/análise , Dióxido de Nitrogênio/análise , Compostos de Amônio Quaternário/análise , Sulfatos/análise , Suíça
8.
Environ Monit Assess ; 98(1-3): 93-107, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15473531

RESUMO

Gaseous ammonia (NH3) is an important form of N deposition to ecosystems, but it is not being routinely monitored in Switzerland. Therefore, a study was conducted to estimate annual means and seasonal patterns of NH3 concentrations for different site types in Switzerland, and to compare annual measured and modelled NH3 concentrations. NH3 concentrations were measured using the 'Zürcher' passive sampler, a Palmes type sampler with an acidic solution as absorbent. Twenty-four sampling sites were run for one year, and 17 for two years. The samplers were changed fortnightly or monthly. Spatial emission patterns were mapped by combining information on (1) the location of emission sources, (2) national statistics on NH3-emitting activities and (3) activity-specific emission factors. The spatial resolution was one hectare. The mean annual NH3 concentration in the ambient air of the 41 sites was 2.5+/-0.3 microg m(-3) (mean+/-standard error). It ranged from 0.4 to 7.5 microg m(-3). The site type and the season were the most important factors explaining the variation in the seasonal mean concentration. NH3 concentrations were highest in intensively used agricultural areas and in cities, and lowest in Alpine sites remote from emission sources. At 39 out of 41 sites, the NH3 concentrations were higher in summer (3.1+/-0.3 microg m(-3)) than in winter (2.0+/-0.3 microg m(-3)). Modelled NH3 concentrations did not systematically deviate from measured concentrations (r2 = 0.69). With the combined monitoring and modelling approach, it is now possible to obtain a reasonable and consolidated picture of the overall NH3 situation in Switzerland.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental/métodos , Criação de Animais Domésticos , Animais , Indústria de Laticínios , Humanos , Modelos Teóricos , Reprodutibilidade dos Testes , Estações do Ano , Suíça
9.
J Environ Monit ; 5(1): 96-9, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12619762

RESUMO

Ambient ammonia concentrations, mainly originating from agricultural activities, have increased in the last few decades in Europe. As a consequence, critical loads on oligotrophic ecosystems such as forests and mires are greatly exceeded. Monitoring of ambient ammonia concentrations is necessary in order to investigate source-receptor relationships. Measuring ambient ammonia concentrations continuously with high time resolution is very expensive and cost-efficient systems are required. Where time resolution is of minor importance, several cost-effective systems, mainly dry denuder and passive samplers, can be applied. In this paper the Zürcher passive sampler, a diffusive sampling system, is presented. It is a Palmes type sampler with an acidic solution as absorbent and is easy to handle. It was tested at 46 sites in Switzerland over one year. The average concentration in ambient air was 2.5 microg m(-3) +/- 0.4 microg m(-3). The average of the blank values were 0.21 microg m(-3). The detection limit (double the standard deviation of the blank values) was 0.36 microg m(-3). Three passive samplers were exposed at each site and each period. The mean standard deviation of these triplicate measurements was 9.5%. Compared with a discontinuous tubular denuder system and a continuous annular denuder system, the deviation was less than 10%. The Zürcher passive sampler is a useful and cost-efficient tool to determine long-term average ammonia concentrations (one- to four-week periods) in ambient air for mean concentrations above 1 microg m(-3).


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Monitoramento Ambiental/métodos , Agricultura , Difusão , Ecossistema , Valores de Referência , Sensibilidade e Especificidade , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...