Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2792-2799, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37010816

RESUMO

Engineering the transition metal dichalcogenide (TMD)-metal interface is critical for the development of two-dimensional semiconductor devices. By directly probing the electronic structures of WS2-Au and WSe2-Au interfaces with high spatial resolution, we delineate nanoscale heterogeneities in the composite systems that give rise to local Schottky barrier height modulations. Photoelectron spectroscopy reveals large variations (>100 meV) in TMD work function and binding energies for the occupied electronic states. Characterization of the composite systems with electron backscatter diffraction and scanning tunneling microscopy leads us to attribute these heterogeneities to differing crystallite orientations in the Au contact, suggesting an inherent role of the metal microstructure in contact formation. We then leverage our understanding to develop straightforward Au processing techniques to form TMD-Au interfaces with reduced heterogeneity. Our findings illustrate the sensitivity of TMDs' electronic properties to metal contact microstructure and the viability of tuning the interface through contact engineering.

2.
PNAS Nexus ; 1(5): pgac238, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36712373

RESUMO

The ability of metal surfaces to dissociate hydrogen molecules is key to many ways that metals react to their environment. Often, the barrier to dissociation is linked to the formation of surface hydrogen adatoms. Here, we show that hydrogen can be more strongly bound to water-covered surfaces in the form of hydronium ions than as adatoms. Density functional theory reveals that the hydronium binding is proportional to the surface electronic work function. For the case of Pt(111), a particularly high work function surface, the proton affinity of adsorbed water films can be 0.4 eV larger than that of the bare metal surface. This binding is large enough to make the water films susceptible to the formation of hydroxyl and hydronium ion pairs. We present evidence from scanning tunneling microscopy for the existence of hydronium ions in water films on Pt(111). This new insight into the stability of hydronium-containing water layers provides a basis for more realistic models of the chemical reactivity of water films on metals.

3.
J Chem Phys ; 155(9): 094701, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496587

RESUMO

The passivation of polycrystalline nickel surfaces against hydrogen uptake by oxygen is investigated experimentally with low energy ion scattering (LEIS), direct recoil spectroscopy (DRS), and thermal desorption spectroscopy (TDS). These techniques are highly sensitive to surface hydrogen, allowing the change in hydrogen adsorption in response to varying amounts of oxygen exposure to be measured. The chemical composition of a nickel surface during a mixed oxygen and hydrogen exposure was characterized with LEIS and DRS, while the uptake and activation energies of hydrogen on a nickel surface with preadsorbed oxygen were quantified with TDS. By and large, these measurements of how the oxygen and hydrogen surface coverage varied in response to oxygen exposure were found to be consistent with predictions of a simple site-blocking model. This finding suggests that, despite the complexities that arise due to polycrystallinity, the oxygen-induced passivation of a polycrystalline nickel surface against hydrogen uptake can be approximated by a simple site-blocking model.

4.
Nanoscale ; 11(44): 21147-21154, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31663582

RESUMO

Ice in the atmosphere affects Earth's radiative properties and initiates most precipitation. Growing ice often requires a solid surface, either to catalyze freezing of supercooled cloud droplets or to serve as a substrate for ice deposited from water vapor. There is evidence that this surface is typically provided by airborne mineral dust; but how chemistry, structure and morphology interrelate to determine the ice-nucleating ability of mineral surfaces remains elusive. Here, we combine optical microscopy with atomic force microscopy to explore the mechanisms of initial ice growth on alkali feldspar, a mineral proposed to dominate ice nucleation in Earth's atmosphere. When cold air becomes supersaturated with respect to water, we discovered that ice rapidly spreads along steps of a feldspar surface. By measuring how ice propagation depends on surface-step height we establish a scenario where supercooled liquid water condenses at steps without having to overcome a nucleation barrier, and subsequently freezes quickly. Our results imply that steps, which are common even on macroscopically flat feldspar surfaces, can accelerate water condensation followed by freezing, thus promoting glaciation and dehydration of mixed-phase clouds.

5.
ACS Appl Mater Interfaces ; 10(45): 39400-39410, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30354047

RESUMO

HKUST-1 or Cu3BTC2 (BTC = 1,3,5-benzenetricarboxylate) is a prototypical metal-organic framework (MOF) that holds a privileged position among MOFs for device applications, as it can be deposited as thin films on various substrates and surfaces. Recently, new potential applications in electronics have emerged for this material when HKUST-1 was demonstrated to become electrically conductive upon infiltration with 7,7,8,8-tetracyanoquinodimethane (TCNQ). However, the factors that control the morphology and reactivity of the thin films are unknown. Here, we present a study of the thin-film growth process on indium tin oxide and amorphous Si prior to infiltration. From the unusual bimodal, non-log-normal distribution of crystal domain sizes, we conclude that the nucleation of new layers of Cu3BTC2 is greatly enhanced by surface defects and thus difficult to control. We then show that these films can react with methanolic TCNQ solutions to form dense films of the coordination polymer Cu(TCNQ). This chemical conversion is accompanied by dramatic changes in surface morphology, from a surface dominated by truncated octahedra to randomly oriented thin platelets. The change in morphology suggests that the chemical reaction occurs in the liquid phase and is independent of the starting surface morphology. The chemical transformation is accompanied by 10 orders of magnitude change in electrical conductivity, from <10-11 S/cm for the parent Cu3BTC2 material to 10-1 S/cm for the resulting Cu(TCNQ) film. The conversion of Cu3BTC2 films, which can be grown and patterned on a variety of (nonplanar) substrates, to Cu(TCNQ) opens the door for the facile fabrication of more complex electronic devices.

6.
Nat Commun ; 6: 6880, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25892219

RESUMO

Graphene films grown by vapour deposition tend to be polycrystalline due to the nucleation and growth of islands with different in-plane orientations. Here, using low-energy electron microscopy, we find that micron-sized graphene islands on Ir(111) rotate to a preferred orientation during thermal annealing. We observe three alignment mechanisms: the simultaneous growth of aligned domains and dissolution of rotated domains, that is, 'ripening'; domain boundary motion within islands; and continuous lattice rotation of entire domains. By measuring the relative growth velocity of domains during ripening, we estimate that the driving force for alignment is on the order of 0.1 meV per C atom and increases with rotation angle. A simple model of the orientation-dependent energy associated with the moiré corrugation of the graphene sheet due to local variations in the graphene-substrate interaction reproduces the results. This work suggests new strategies for improving the van der Waals epitaxy of 2D materials.

7.
J Chem Phys ; 141(18): 18C520, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25399185

RESUMO

We examined the growth and stability of ice layers on Ni(111) up to ∼7 molecular layers (ML) thick using scanning tunneling microscopy. At low coverage, films were comprised of ∼1 nm wide two-dimensional (2D) clusters. Only above ∼0.5 ML did patches of continuous 2D layers emerge, coexisting with the clusters until the first ML was complete. The structure of the continuous layer is clearly different from that of the 2D clusters. Subsequently, a second molecular layer grew on top of the first. 3D crystallites started to form only after this 2nd ML was complete. 2D clusters re-appeared when thicker films were partially evaporated, implying that these clusters represent the equilibrium configuration at low coverage. Binding energies and image simulations computed with density functional theory suggest that the 2D clusters are partially dissociated and surrounded by H adatoms. The complete 2D layer contains only intact water molecules because of the lack of favorable binding sites for H atoms. We propose molecular structures for the 2D layer that are composed of the same pentagon-heptagon binding motif and water density observed on Pt(111). The similarity of the water structures on Pt and Ni suggests a general prescription for generating low-energy configurations on close-packed metal substrates.

8.
Proc Natl Acad Sci U S A ; 110(29): 11757-62, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818592

RESUMO

From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure--that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ~20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice.


Assuntos
Temperatura Baixa , Gelo/análise , Conformação Molecular , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Modelos Químicos
9.
Phys Rev Lett ; 100(18): 186101, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18518392

RESUMO

Quantifying dewetting phenomena at the microscopic level is the key to deciphering how a balance between kinetic and equilibrium effects determines ice-film morphology on Pt(111). Overcoming the difficulty of imaging nominally insulating ice multilayers with scanning tunneling microscopy allowed us to track the dewetting process. The results show that the rate at which new layers nucleate, and not surface diffusion, determines how fast individual crystallite shapes equilibrate. Applying nucleation theory to measured growth rates versus crystallite size, we obtain new bounds on the energetics both of step formation on ice and of the Pt-ice interface.

10.
Science ; 311(5765): 1272-4, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16513979

RESUMO

We report a new mechanism of self-organization that can lead to robust surface ordering. We have quantitatively analyzed the thermal motion of holes created by sulfur atoms in a silver monolayer on a ruthenium surface, which we observed in real time with scanning tunneling microscopy. We find that the stability of the array of holes is determined by the arrangement and structure of misfit dislocations in the film.

11.
Science ; 297(5589): 2033-5, 2002 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-12242437

RESUMO

Growth of an ultrathin lead oxide layer causes massive changes in the shape of lead crystallites. The dynamics of this process was investigated with time-lapsed scanning tunneling microscopy. Pure lead crystallites proved extremely resistant to oxidation. Once nucleated by surface impurities, monolayer films of lead oxide grew readily on lead (111) microfacets in an autocatalytic process. The anisotropic growth of orthorhombic lead oxide films (massicot structure) was most rapid along the direction of weakest lead-oxygen bonding, which suggests that the growth edge autocatalyzes oxygen dissociation by providing proximal sites for oxygen dissociation and attachment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...