Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10115, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698006

RESUMO

The photocatalytic activity of titanium dioxide (TiO2) nanoparticles toward hydrogen generation can be significantly improved via the loading of various metals e.g., Ru, Co, Ni as co-catalysts. The metal co-catalysts are loaded into TiO2 nanoparticles via different deposition methods; incipient wet impregnation (Imp), hydrothermal (HT), or photocatalytic deposition (PCD). Among all of the tested materials, 0.1 wt% Ru-TiO2 (Imp) provided the highest initial hydrogen catalytic rate of 23.9 mmol h-1 g-1, compared to 10.82 and 16.55 mmol h-1 g-1 for 0.3 wt% Ni-TiO2 (Imp) and 0.3 wt% Co-TiO2 (Imp), respectively. The loading procedures, co-catalyst metals type, and their loading play a significant role in elevating the photocatalytic activity of pristine TiO2 semiconductors toward hydrogen generation. Redox transition metals e.g., Co and Ni exhibit comparable photocatalytic performance to expensive elements such as Ru.

2.
Sci Rep ; 12(1): 5499, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361831

RESUMO

The resources of clean water worldwide are very limited, and climate change is already affecting the available supplies. Therefore, developing a low-cost, highly efficient, and recyclable adsorbent to upgrade water quality has become an essential task. Herein, we report the fabrication of activated carbon (AC) adsorbents derived from lignocellulosic wastes. Both physical and chemical activation were investigated to modify the surface texture properties. The results indicated that increasing the activation temperature, whether physically or chemically, increases the specific surface area (SBET). On the contrary, increasing the amount of the chemical activating agent significantly decreases the SBET values. The SBET of 1771, 2120, and 2490 m2 g-1 were obtained for water vapor, K2CO3 and KOH, at activation temperatures of 950 °C, 800 °C, and 800 °C, respectively. Methylene blue (MB) and phenol were used as adsorbates for the adsorption experiment. Adsorption of methylene blue dye revealed the ability of the water activated carbon to remove more than 95% of the dye (100 ppm) within 5 min with an adsorption capacity of 148.8 mg g-1. For phenol adsorption, Several parameters were investigated, including initial concentration (50-250 ppm), pH (2-10), contact time (5-60 min), and temperature (25-45 °C). The highest adsorption capacity of phenol achieved was 158.9 mg g-1. The kinetics of adsorption of phenol was better described by pseudo-second-order reaction while the isotherm process using Langmuir model. This study presents a roadmap for conversion of lignocellulosic biomass waste into highly efficient porous carbon adsorbents.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Agricultura , Carvão Vegetal/química , Lignina , Azul de Metileno/química , Fenol , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...