Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 150: 106363, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38169207

RESUMO

OBJECTIVES: Restored teeth undergo more damage than intact teeth. Therefore, the scientific investigation of their mechanical and physical behaviour under varying oral conditions is vital. The current study is to numerically investigate the stresses on a class-II mesio-occluso-distal (MOD) restored molar due to thermal and thermomechanical stimuli with varying input properties such as coefficient of thermal expansion and elastic properties. This is performed to optimise the dental restoration material, thereby reducing the stresses and failure of the restoration. METHODS: An upper molar was scanned using µ-CT for segmenting and modelling the enamel and dentine. A class-II MOD cavity was then prepared on the model, after which non-manifold meshing was generated. The coefficient of thermal expansion (CTE) and elastic modulus (E) properties of the restoration were varied from 20 × 10-6 °C-1 to 55 × 10-6 °C-1 and 5 GPa-20 GPa, respectively. After the material properties and boundary conditions were set for the finite element (FE) analysis, the thermal and thermomechanical loading analyses were performed to demonstrate the influence of input parameters on the stress. The maximum values of principal stresses on the restoration-enamel junction and the restoration were evaluated. The results were statistically processed using analysis of variance, response surface methodology (RSM) and optimisation analysis to estimate the most optimum inputs for minimising principal stresses. RESULTS: The study reveals that the location of principal stress occurs at the restoration-enamel junction (REJ) and the restoration changes based on the composite material value of E and CTE due to thermal and thermomechanical stimuli. The REJ showed higher principal stress than restoration during the application of both thermal and thermomechanical stimuli, making it more vulnerable to fracture and failure. Moreover, the study showed non-linear variations in the values and locations of principal stresses due to thermal and thermomechanical stimuli with the change in the property of the restoration composite used. Finally, this study derived an optimised restorative value for CTE and E due to the application of thermal and simultaneous thermal and mechanical stimuli. CONCLUSION: This study highlights the importance of choosing the suitable material properties of the restoration composite by dental clinicians to repair a large class MOD cavity. The findings from this study also suggest that the difference in the values of E and CTE in a dental restoration composite when compared with the enamel causes a lack of uniformity in mechanical and thermal properties, thereby forming stress concentrations at the interfaces. The study establishes two optimised CTE and E values for the MOD restoration composite as 25 × 10-6 °C-1 and 20 GPa and 37 × 10-6 °C-1 and 5 GPa, respectively.


Assuntos
Resinas Compostas , Dente Molar , Análise de Elementos Finitos , Estresse Mecânico , Módulo de Elasticidade , Dente Molar/fisiologia , Restauração Dentária Permanente , Análise do Estresse Dentário
2.
Dent Mater ; 39(4): 362-371, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922257

RESUMO

OBJECTIVES: This paper presents the effect of silane treatment of S-2 Glass fibres on the fracture toughness and water sorption/solubility behaviour of fibre-reinforced flowable dental composites. The effect of epoxy- and methacrylate-based silane coupling agents (SCAs) on the mechanical strength and hydrolytic properties were investigated. The concentration of the selected SCAs on the mechanical and physical properties were investigated. The influence of molecular structure and concentration in the interfacial adhesion at the fibre-matrix interfaces was also studied. METHODS: Short S-2 Glass fibres of 250 µm in length and 5 µm in diameter were etched with acid to remove any impurities and roughen the surface. The acid-etched fibres were silane treated with 3MPS, 3GPS, and 8MOTS at different concentrations by weight (%). The silane-treated fibres were incorporated at 5 % into the dental resin mixture. Untreated fibres were added at 5 % to the dental resin mixture and served as the control group. The physical properties such as water sorption, solubility, and desorption along with mechanical properties such as fracture toughness and total fracture work of the fibre-reinforced dental composites grafted with the above-mentioned SCAs were evaluated. The surface morphology of the fractured surface was studied and analysed. RESULTS: The fracture toughness tests showed that the dental composites grafted with optimum weight per cent (wt. %) concentration of the SCA had a better stress intensity factor (KIC) when compared to the 2.0 wt. % and 3.0 wt. % concentration. The KIC value of dental composites grafted with untreated surface etched glass fibres was less than the KIC values of dental composites grafted with optimum concentrations of 3MPS, 3GPS, and 8MOTS by 81.6 %, 38.6 %, and 110.5 %, respectively. A similar trend was found while investigating the total work of fracture of the dental composites, between optimum concentration, 2.0 wt. % and 3.0 wt. % concentration of respective SCA. The increase in silane concentration also led to an increase in the water sorption/solubility characteristics. The absorption of water was most severe in the fibre-reinforced dental composites without silane treatment (32.9 µg/mm3). The ANOVA results showed that the fibre-reinforced dental composites grafted with 8MOTS at optimum concentration showed an increase in fracture toughness when compared to optimum concentrations of 3GPS and 3MPS by 51.9 % and 15.9 %, respectively. The enhanced mechanical and physical characteristics are due to the increased adhesion between the fibre and silane achieved from the optimum wt. % concentration of 8MOTS. Similarly, dental composites grafted with 8MOTS at optimum concentration showed a decrease in water sorption characteristics when compared to optimum concentrations of 3GPS and 3MPS by 18.2 % and 0.6 %, respectively. The decreased water sorption characteristics at the optimum concentration of 8MOTS could be due to the reduced availability of reactive hydroxyl groups and the hydrophobic characteristics of 8MOTS. SIGNIFICANCE: Silane coupling agents (SCAs) are important components of dental composites. The type and concentration of SCA have a significant effect on material properties. The current study focuses on understanding the effects of different SCAs and wt. % concentrations on the interfacial fracture behaviour and the influence of different SCAs on the water sorption and solubility behaviour of S-2 Glass fibre-reinforced flowable dental composites.


Assuntos
Silanos , Água , Silanos/química , Água/química , Teste de Materiais , Resinas Compostas/química , Fenômenos Químicos , Metacrilatos/química , Propriedades de Superfície
3.
Dent Mater ; 38(7): 1173-1183, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35691728

RESUMO

OBJECTIVES: This experimental investigation explored the optimisation of silane treatment of surface-modified S-2 Glass fibres in restorative dental composites for improved mechanical performance. The influence of optimum amount of silane to improve the interfacial adhesion at the fibre-matrix interfaces and its effect on the mechanical properties of the restorative composites were explored. METHODS: S-2 Glass fibres of 5 µm diameter and 250 µm length were surface modified using the acid etching technique. The etched fibres were then treated with either 3-methacryloxypropyltrimethoxysilane (3-MPS), 3-Glycidoxipropyltrimethoxysilane (3-GPS) or 8-methacryloxyoctyltrimethoxysilane (8-MOTS) at varying molar % / wt% concentrations. Fibres that were not silanised with any silane coupling agents were used as the control sample. The silanol content of each mixed silane was observed using Fourier transform infrared (FT-IR) spectroscopy analysis. Fibres (5 wt%) with optimised molar% / wt% silane coupling concentration were added to UDMA/TEGDMA dental resin. Mechanical properties such as flexural strength, flexural modulus, and the breaking energy of the materials were evaluated using a comprehensive experimental programme. RESULTS: FTIR spectrum of glass fibre silanised with each silane coupling agent revealed many peaks from 3800 to 1400 cm-1, indicative of -CH3, -CH2, and CO bonding, suggesting the proper silanization of the fibre. The contact angle test revealed that optimum wt% concentration of 3-MPS, 3-GPS and 8-MOTS were 0.5%, 0.8% and 1.4% respectively. The flexural strength of the fibre-reinforced with optimum concentration of 3-MPS (DC-3-MPS_0.5%) increased by 7.0% compared to those of the 2 wt% concentration of 3-MPS fibre-reinforced composite (DC-3-MPS_2.0%). While the flexural strength of optimum concentration 8-MOTS grafted dental resin composites (DC-8-MOTS_1.4%) were 9.9% higher than that of 2 wt% concentration 8-MOTS grafted dental resin composite (DC-8-MOTS_2.0%) and the flexural strength of optimum concentration of 3-GPS (DC-3-GPS_0.8%) was 7.5% higher when compared to that of 2 wt% concentration 3-GPS grafted dental resin composites (DC-3-GPS_2.0%). A concurrent trend was found while investigating the fracture behaviour of the dental composite with optimum wt% concentration of each silane coupling agent against its corresponding higher wt% concentrations. The ANOVA results showed that the optimum fibre-reinforced dental composites grafted with 8-MOTS showed better mechanical behaviour when compared to 3-GPS and 3-MPS. SIGNIFICANCE: The interfacial adhesion between the fibre and the resin due to silane coupling agents has helped to improve the mechanical properties of the fibre-reinforced dental composite. This is the first experimental study to provide a thorough investigation into the significance of the optimal use of silane coupling agents to treat the S-2 Glass fibres and subsequently the influence on the mechanical performance of the fibre-reinforced flowable dental composites.


Assuntos
Resinas Compostas , Silanos , Resinas Compostas/química , Resistência à Flexão , Teste de Materiais , Silanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
4.
Dent Mater ; 38(5): 811-823, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35450702

RESUMO

OBJECTIVES: In-vivo experimental techniques to understand the biomechanical behavior of a restored tooth, under varying oral conditions, is very limited because of the invasive nature of the study and complex tooth geometry structure. Therefore, 3D-Finite element analyses are used to understand the behavior of a restored tooth under varying oral conditions. In this study, the distribution of maximum principal stress (MaxPS) and the location of MaxPS on a restored tooth using six different commercially available dental resin composites under the influence of thermal and thermomechanical stimuli are performed. METHODS: An intact tooth was scanned using µ-CT and segmented to obtain separate geometric models of the tooth, including enamel and dentine. Then, a class II mesial-occlusal-distal (MOD) cavity was constructed for the tooth model. The restored tooth model was further meshed and imported to the commercial Finite Element (FE) software ANSYS. Thermal hot and cold stimuli at 50 °C and 2 °C, respectively, were applied on the occlusal and lingual surface of the tooth model with the tooth's ambient temperature set at 37 °C. A uniform loading of 400 N was applied on the occlusal surface of the tooth to imitate the masticatory forces during the cyclic thermal stimuli. RESULTS: The results of this study showed that the restorative materials with higher thermal conductivity showed a lower temperature gradient between the restoration and enamel, during the application of thermal stimuli, leading to a higher value of MaxPS on the restoration. Moreover, on applying thermal stimuli, the location of MaxPS at the restoration-enamel junction (REJ) changes based on the value of the coefficient of thermal expansion (CTE). The MaxPS distribution on the application of simultaneous thermal and mechanical stimuli was not only dependent on the elastic modulus of restorative materials but also their thermal properties such as the CTE and thermal conductivity. The weakest part of the restoration was at the REJ, as it experienced the peak stress level during the application of thermomechanical stimuli. SIGNIFICANCE: The findings from this study suggest that restorative materials with lower values of elastic modulus, lower coefficient of thermal expansion and higher values of thermal conductivity result in lower stresses on the restoration. The outcomes from this study also suggest that the thermal and mechanical properties of a restorative material can have a considerable effect on the selection of restorative materials by dental clinicians over conventional restorative materials.


Assuntos
Resinas Compostas , Restauração Dentária Permanente , Resinas Compostas/química , Materiais Dentários , Restauração Dentária Permanente/métodos , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Dente Molar , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...