Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 607(Pt 1): 698-710, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34530190

RESUMO

Anisotropic nanoparticles offer considerable promise for applications but also present significant challenges in terms of their characterization. Recent developments in the electroless deposition of silver patches directly onto colloidal silica particles have opened up a simple and scalable synthesis method for patchy particles with tunable optical properties. Due to the reliance on patch nucleation and growth, however, the resulting coatings are distributed in coverage and thickness and some core particles remain uncoated. To support process optimization, new methods are required to rapidly determine patch yield, thickness and coverage. Here we present a novel approach based on multiwavelength analytical ultracentrifugation (MWL-AUC) which permits simultaneous hydrodynamic and spectroscopic characterization. The patchy particle colloids are produced in a continuous flow mixing process that makes use of a KM-type micromixer. By varying the process flow rate or metal precursor concentration we show how the silver to silica mass ratio distribution derived from the AUC-measured sedimentation coefficient distribution can be influenced. Moreover, through reasoned assumptions we arrive at an estimation of the patch yield that is close to that determined by arduous analysis of scanning electron microscopy (SEM) images. Finally, combining MWL-AUC, electrodynamic simulations and SEM image analysis we establish a procedure to estimate the patch thickness and coverage.


Assuntos
Nanopartículas , Prata , Coloides , Dióxido de Silício , Ultracentrifugação
2.
Langmuir ; 35(35): 11491-11502, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31385708

RESUMO

Brownian dynamics (BD) has been applied as a comprehensive tool to model sedimentation and diffusion of nanoparticles in analytical ultracentrifugation (AUC) experiments. In this article, we extend the BD algorithm by considering space-dependent diffusion and solvent compressibility. With this, the changes in the sedimentation and diffusion coefficient from altered solvent properties at increased pressures are accurately taken into account. Moreover, it is demonstrated how the concept of space-dependent diffusion is employed to describe concentration-dependent sedimentation and diffusion coefficients, in particular, through the Gralen coefficient and the second virial coefficient. The influence of thermodynamic nonideality on diffusional properties can be accurately simulated and agree with well-known evaluation tools. BD simulations for sedimentation equilibrium and sedimentation velocity (SV) AUC experiments including effects of hydrodynamic and thermodynamic nonideality are validated by global evaluation in SEDANAL. The interplay of solvent compressibility and retrieved nonideality parameters can be studied utilizing BD. Finally, the second virial coefficient is determined for lysozyme from SV AUC experiments and BD simulations and compared to membrane osmometry. These results are in line with DLVO theory. In summary, BD simulations are established for the validation of nonideal sedimentation in AUC providing a sound basis for the evaluation of complex interactions even in polydisperse systems.

3.
Nat Commun ; 9(1): 4898, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30464237

RESUMO

Properties of nanoparticles are influenced by various parameters like size, shape or composition. Comprehensive high throughput characterization techniques are urgently needed to improve synthesis, scale up to production and make way for new applications of multidimensional particulate systems. In this study, we present a method for measuring two-dimensional size distributions of plasmonic nanorods in a single experiment. Analytical ultracentrifuge equipped with a multiwavelength extinction detector is used to record the optical and sedimentation properties of gold nanorods simultaneously. A combination of sedimentation and extinction properties, both depending on diameter and length of the dispersed nanorods, is used to measure two-dimensional distributions of gold nanorod samples. The length, diameter, aspect ratio, volume, surface and cross-sectional distributions can be readily obtained from these results. As the technique can be extended to other non-spherical plasmonic particles and can be used for determining relative amounts of particles of different shapes it provides complete and quantitative insights into particulate systems.

4.
Eur Biophys J ; 47(7): 777-787, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29909434

RESUMO

By combining analytical ultracentrifugation (AUC) in liquid phase and scanning mobility particle sizer (SMPS) in the gas phase, additional information on the particle size and morphology has been obtained for rigid particles. In this paper, we transfer this concept to soft particles, allowing us to analyze the size and molar mass of the short side chain perfluorosulfonic acid ionomer Aquivion® in a dilute aqueous suspension. The determination of the primary size and exact molar mass of this class of polymers is challenging since they are optically transparent and due to the formation of different aggregate structures depending on the concentration and solvent properties. First, validation of AUC and SMPS measurements was carried out using the well-defined biopolymers bovine serum albumin (BSA) and lysozyme (LYZ) to confirm the reliability of the results of the two unique and independent classifying methods. Then, the ionomer Aquivion® was studied using both techniques. From the mean molar mass of 185 ± 14 kDa obtained by AUC, a mean hydrodynamic diameter of 7.6 ± 0.5 nm was calculated. The particle size obtained from SMPS (7.1 nm) agrees very well with the results from AUC showing that the molecule was transferred into the gas phase without significantly changing its structure. In conclusion, the Aquivion® is molecularly dispersed in the used aqueous buffer solution without any aggregate formation in the investigated concentration range (< 2 g l-1).


Assuntos
Tamanho da Partícula , Polímeros/química , Soroalbumina Bovina/química , Ultracentrifugação/métodos , Animais , Bovinos , Peso Molecular , Muramidase/química , Ultracentrifugação/instrumentação
5.
Waste Manag ; 52: 346-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27067426

RESUMO

Increased amounts of nanoparticles are applied in products of everyday life and despite material recycling efforts, at the end of their life cycle they are fed into waste incineration plants. This raises the question on the fate of nanoparticles during incineration. In terms of environmental impact the key question is how well airborne nanoparticles are removed by separation processes on their way to the bag house filters and by the existing filtration process based on pulse-jet cleanable fibrous filter media. Therefore, we investigate the scavenging and the filtration of metal nanoparticles under typical conditions in waste incineration plants. The scavenging process is investigated by a population balance model while the nanoparticle filtration experiments are realized in a filter test rig. The results show that depending on the particle sizes, in some cases nearly 80% of the nanoparticles are scavenged by fly ash particles before they reach the bag house filter. For the filtration step dust cakes with a pressure drop of 500Pa or higher are found to be very effective in preventing nanoparticles from penetrating through the filter. Thus, regeneration of the filter must be undertaken with care in order to guarantee highly efficient collection of particles even in the lower nanometre size regime.


Assuntos
Poluentes Atmosféricos/análise , Incineração/métodos , Nanopartículas Metálicas/análise , Filtração/métodos , Tamanho da Partícula
6.
Nanoscale ; 7(15): 6574-87, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25789666

RESUMO

Analytical centrifugation (AC) is a powerful technique for the characterisation of nanoparticles in colloidal systems. As a direct and absolute technique it requires no calibration or measurements of standards. Moreover, it offers simple experimental design and handling, high sample throughput as well as moderate investment costs. However, the full potential of AC for nanoparticle size analysis requires the development of powerful data analysis techniques. In this study we show how the application of direct boundary models to AC data opens up new possibilities in particle characterisation. An accurate analysis method, successfully applied to sedimentation data obtained by analytical ultracentrifugation (AUC) in the past, was used for the first time in analysing AC data. Unlike traditional data evaluation routines for AC using a designated number of radial positions or scans, direct boundary models consider the complete sedimentation boundary, which results in significantly better statistics. We demonstrate that meniscus fitting, as well as the correction of radius and time invariant noise significantly improves the signal-to-noise ratio and prevents the occurrence of false positives due to optical artefacts. Moreover, hydrodynamic non-ideality can be assessed by the residuals obtained from the analysis. The sedimentation coefficient distributions obtained by AC are in excellent agreement with the results from AUC. Brownian dynamics simulations were used to generate numerical sedimentation data to study the influence of diffusion on the obtained distributions. Our approach is further validated using polystyrene and silica nanoparticles. In particular, we demonstrate the strength of AC for analysing multimodal distributions by means of gold nanoparticles.

7.
Small ; 11(7): 814-25, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25201557

RESUMO

In this paper, a method to determine the lateral dimensions of 2D nanosheets directly in suspension by analytical ultracentrifugation (AUC) is shown. The basis for this study is a well-characterized and stable dispersion of graphene oxide (GO) monolayers in water. A methodology is developed to correlate the sedimentation coefficient distribution measured by AUC with the lateral size distribution of the 2D GO nanosheets obtained from atomic force microscopy (AFM). A very high accuracy can be obtained by virtue of counting several thousand sheets, thereby minimizing any coating effects or statistical uncertainties. The AFM statistics are further used to fit the lateral size distribution obtained from the AUC to determine the unknown hydrodynamic sheet thickness or density. It is found that AUC can derive nanosheet diameter distributions with a relative error of the mean sheet diameter of just 0.25% as compared to the AFM analysis for 90 mass% of the particles in the distribution. The standard deviation of the size-dependent error for the total distribution is found to be 3.25%. Based on these considerations, an expression is given to calculate the cut size of 2D nanosheets in preparative centrifugation experiments.

8.
J Chem Phys ; 135(5): 054302, 2011 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-21823695

RESUMO

Aerosol particle reactions with vapor molecules and molecular clusters are often collision rate limited, hence determination of particle-vapor molecule and particle-molecular cluster collision rates are of fundamental importance. These collisions typically occur in the mass transfer transition regime, wherein the collision kernel (collision rate coefficient) is dependent upon the diffusive Knudsen number, Kn(D). While this alone prohibits analytical determination of the collision kernel, aerosol particle- vapor molecule collisions are further complicated when particles are non-spherical, as is often the case for particles formed in high temperature processes (combustion). Recently, through a combination of mean first passage time simulations and dimensional analysis, it was shown that the collision kernel for spherical particles and vapor molecules could be expressed as a dimensionless number, H, which is solely a function of Kn(D). In this work, it is shown through similar mean first passage times and redefinitions of H and Kn(D) that the H(Kn(D)) relationship found for spherical particles applies for particles of arbitrary shape, including commonly encountered agglomerate particles. Specifically, it is shown that to appropriately define H and Kn(D), two geometric descriptors for a particle are necessary: its Smoluchowski radius, which defines the collision kernel in the continuum regime (Kn(D)→0) and its orientationally averaged projected area, which defines the collision kernel in the free molecular regime (Kn(D)→∞). With these two parameters, as well as the properties of the colliding vapor molecule (mass and diffusion coefficient), the particle-vapor molecule collision kernel in the continuum, transition, and free molecular regimes can be simply calculated using the H(Kn(D)) relationship.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...