Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 20: 25-41, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31546104

RESUMO

Normal synapse formation is fundamental to brain function. We show here that an apical-basal polarity (A-BP) protein, Lgl1, is present in the postsynaptic density and negatively regulates glutamatergic synapse numbers by antagonizing the atypical protein kinase Cs (aPKCs). A planar cell polarity protein, Vangl2, which inhibits synapse formation, was decreased in synaptosome fractions of cultured cortical neurons from Lgl1 knockout embryos. Conditional knockout of Lgl1 in pyramidal neurons led to reduction of AMPA/NMDA ratio and impaired plasticity. Lgl1 is frequently deleted in Smith-Magenis syndrome (SMS). Lgl1 conditional knockout led to increased locomotion, impaired novel object recognition and social interaction. Lgl1+/- animals also showed increased synapse numbers, defects in open field and social interaction, as well as stereotyped repetitive behavior. Social interaction in Lgl1+/- could be rescued by NMDA antagonists. Our findings reveal a role of apical-basal polarity proteins in glutamatergic synapse development and function and also suggest a potential treatment for SMS patients with Lgl1 deletion.

2.
Proc Natl Acad Sci U S A ; 114(4): E610-E618, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28057866

RESUMO

The signaling mechanisms that choreograph the assembly of the highly asymmetric pre- and postsynaptic structures are still poorly defined. Using synaptosome fractionation, immunostaining, and coimmunoprecipitation, we found that Celsr3 and Vangl2, core components of the planar cell polarity (PCP) pathway, are localized at developing glutamatergic synapses and interact with key synaptic proteins. Pyramidal neurons from the hippocampus of Celsr3 knockout mice exhibit loss of ∼50% of glutamatergic synapses, but not inhibitory synapses, in culture. Wnts are known regulators of synapse formation, and our data reveal that Wnt5a inhibits glutamatergic synapses formed via Celsr3. To avoid affecting earlier developmental processes, such as axon guidance, we conditionally knocked out Celsr3 in the hippocampus 1 week after birth. The CA1 neurons that lost Celsr3 also showed a loss of ∼50% of glutamatergic synapses in vivo without affecting the inhibitory synapses assessed by miniature excitatory postsynaptic current (mEPSC) and electron microscopy. These animals displayed deficits in hippocampus-dependent behaviors in adulthood, including spatial learning and memory and fear conditioning. In contrast to Celsr3 conditional knockouts, we found that the conditional knockout of Vangl2 in the hippocampus 1 week after birth led to a large increase in synaptic density, as evaluated by mEPSC frequency and spine density. PCP signaling is mediated by multiple core components with antagonizing functions. Our results document the opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation.


Assuntos
Caderinas/fisiologia , Hipocampo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células Piramidais/fisiologia , Receptores de Superfície Celular/fisiologia , Sinapses/fisiologia , Animais , Comportamento Animal , Caderinas/genética , Polaridade Celular , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/fisiologia , Locomoção , Masculino , Aprendizagem em Labirinto , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Receptores de Superfície Celular/genética , Proteína Wnt-5a/fisiologia
3.
Mol Cell Neurosci ; 50(2): 201-10, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22579729

RESUMO

Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY(1229)H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY(1229) motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY(1229) and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY(1229) by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY(1229). Tyrosine(1176) in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr(1176) to Ala in L1-Y(1176)A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY(1229) in wild type but not L1-FIGQY(1229)H (L1Y(1229)H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y(1229)H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY(1229) in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography.


Assuntos
Mapeamento Encefálico , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Receptor EphB2/metabolismo , Células Ganglionares da Retina/fisiologia , Colículos Superiores/fisiologia , Animais , Anquirinas/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Mutação , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Receptor EphB2/genética , Receptores da Família Eph/metabolismo , Células Ganglionares da Retina/metabolismo , Tirosina/genética
4.
Nat Commun ; 2: 431, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21847105

RESUMO

Graded expression of EphB and ephrin-B along the dorsoventral axis of the retina indicates a role for these bidirectional signalling molecules in dorsoventral-mediolateral retinocollicular mapping. Although previous studies have implicated EphB2 forward signalling in mice, the intracellular component of EphB2 essential for retinocollicular mapping is unknown as are the roles for EphB1, ephrin-B1, and ephrin-B2. Here we show that EphB2 tyrosine kinase catalytic activity and EphB1 intracellular signalling are key mediators of ventral-temporal retinal ganglion cell axon retinocollicular mapping, by likely interacting with ephrin-B1 in the superior colliculus. We further elucidate roles for the ephrin-B2 intracellular domain in retinocollicular mapping and present the unexpected finding that both dorsal and ventral-temporal retinal ganglion cell axons utilize reverse signalling for topographic mapping. These data demonstrate that both forward and reverse signalling initiated by EphB:ephrin-B interactions have a major role in dorsoventral retinal ganglion cell axon termination along the mediolateral axis of the superior colliculus.


Assuntos
Efrina-B1/metabolismo , Efrina-B2/metabolismo , Receptor EphB1/metabolismo , Receptor EphB2/metabolismo , Células Ganglionares da Retina/metabolismo , Transdução de Sinais , Colículos Superiores/metabolismo , Animais , Axônios/metabolismo , Efrina-B1/genética , Efrina-B2/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica , Receptor EphB1/genética , Receptor EphB2/genética , Colículos Superiores/embriologia
5.
Cell ; 139(4): 679-92, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19914164

RESUMO

Signaling proteins driving the proliferation of stem and progenitor cells are often encoded by proto-oncogenes. EphB receptors represent a rare exception; they promote cell proliferation in the intestinal epithelium and function as tumor suppressors by controlling cell migration and inhibiting invasive growth. We show that cell migration and proliferation are controlled independently by the receptor EphB2. EphB2 regulated cell positioning is kinase-independent and mediated via phosphatidylinositol 3-kinase, whereas EphB2 tyrosine kinase activity regulates cell proliferation through an Abl-cyclin D1 pathway. Cyclin D1 regulation becomes uncoupled from EphB signaling during the progression from adenoma to colon carcinoma in humans, allowing continued proliferation with invasive growth. The dissociation of EphB2 signaling pathways enables the selective inhibition of the mitogenic effect without affecting the tumor suppressor function and identifies a pharmacological strategy to suppress adenoma growth.


Assuntos
Receptor EphB2/metabolismo , Transdução de Sinais , Animais , Movimento Celular , Proliferação de Células , Ciclina D1/metabolismo , Epitélio , Humanos , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Masculino , Camundongos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...