Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Appl Toxicol ; 38(10): 1323-1335, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29785833

RESUMO

Maintenance of bile acid (BA) homeostasis is essential to achieve their physiologic functions and avoid their toxic effects. The marked differences in BA composition between preclinical safety models and humans may play a major role in the poor prediction of drug-induced liver injury using preclinical models. We compared the composition of plasma and urinary BAs and their metabolites between humans and several animal species. Total BA pools and their composition varied widely among different species. Highest sulfation of BAs was observed in human and chimpanzee. Glycine amidation was predominant in human, minipig, hamster and rabbit, while taurine amidation was predominant in mice, rat and dogs. BA profiles consisted primarily of tri-OH BAs in hamster, rat, dog and mice, di-OH BAs in human, rabbit and minipig, and mono-OH BA in chimpanzee. BA profiles comprised primarily hydrophilic and less toxic BAs in mice, rat, pig and hamster, while it primarily comprised hydrophobic and more toxic BAs in human, rabbit and chimpanzee. Therefore, the hydrophobicity index was lowest in minipig and mice, while it was highest in rabbit, monkey and human. Glucuronidation and glutathione conjugation were low in all species across all BAs. Total concentration of BAs in urine was up to 10× higher and more hydrophilic than plasma in most species. This was due to the presence of more tri-OH, amidated, sulfated and primary BAs, in urine compared to plasma. In general, BA profiles of chimpanzee and monkeys were most similar to human, while minipig, rat and mice were most dissimilar to human.


Assuntos
Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/urina , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Especificidade da Espécie , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Macaca fascicularis , Macaca mulatta , Mesocricetus , Camundongos Endogâmicos C57BL , Pan troglodytes , Coelhos , Ratos Sprague-Dawley , Suínos
3.
J Appl Toxicol ; 38(10): 1336-1352, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29845631

RESUMO

One of the mechanisms of drug-induced liver injury (DILI) involves alterations in bile acid (BA) homeostasis and elimination, which encompass several metabolic pathways including hydroxylation, amidation, sulfation, glucuronidation and glutathione conjugation. Species differences in BA metabolism may play a major role in the failure of currently used in vitro and in vivo models to predict reliably the DILI during the early stages of drug discovery and development. We developed an in vitro cofactor-fortified liver S9 fraction model to compare the metabolic profiles of the four major BAs (cholic acid, chenodeoxycholic acid, lithocholic acid and ursodeoxycholic acid) between humans and several animal species. High- and low-resolution liquid chromatography-tandem mass spectrometry and nuclear magnetic resonance imaging were used for the qualitative and quantitative analysis of BAs and their metabolites. Major species differences were found in the metabolism of BAs. Sulfation into 3-O-sulfates was a major pathway in human and chimpanzee (4.8%-52%) and it was a minor pathway in all other species (0.02%-14%). Amidation was primarily with glycine (62%-95%) in minipig and rabbit and it was primarily with taurine (43%-81%) in human, chimpanzee, dog, hamster, rat and mice. Hydroxylation was highest (13%-80%) in rat and mice followed by hamster, while it was lowest (1.6%-22%) in human, chimpanzee and minipig. C6-ß hydroxylation was predominant (65%-95%) in rat and mice, while it was at C6-α position in minipig (36%-97%). Glucuronidation was highest in dog (10%-56%), while it was a minor pathway in all other species (<12%). The relative contribution of the various pathways involved in BA metabolism in vitro were in agreement with the observed plasma and urinary BA profiles in vivo and were able to predict and quantify the species differences in BA metabolism. In general, overall, BA metabolism in chimpanzee is most similar to human, while BA metabolism in rats and mice is most dissimilar from human.


Assuntos
Ácidos e Sais Biliares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citosol/metabolismo , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Especificidade da Espécie , Animais , Cães , Humanos , Técnicas In Vitro , Macaca fascicularis , Macaca mulatta , Mesocricetus , Camundongos Endogâmicos C57BL , Pan troglodytes , Coelhos , Ratos Sprague-Dawley , Suínos
4.
Oncotarget ; 9(4): 5216-5232, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435174

RESUMO

Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 - now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ∼3.5-fold and ∼65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average >2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy.

5.
Biomed Chromatogr ; 32(3)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28975688

RESUMO

The differences among individual eicosanoids in eliciting different physiological and pathological responses are largely unknown because of the lack of valid and simple analytical methods for the quantification of individual eicosanoids and their metabolites in serum, sputum and bronchial alveolar lavage fluid (BALF). Therefore, a simple and sensitive LC-MS/MS method for the simultaneous quantification of 34 eicosanoids in human serum, sputum and BALF was developed and validated. This method is valid and sensitive with a limit of quantification ranging from 0.2 to 3 ng/mL for the various analytes, and has a large dynamic range (500 ng/mL) and a short run time (25 min). The intra- and inter-day accuracy and precision values met the acceptance criteria according to US Food and Drug Administration guidelines. Using this method, detailed eicosanoid profiles were quantified in serum, sputum and BALF from a pilot human study. In summary, a reliable and simple LC-MS/MS method to quantify major eicosanoids and their metabolites was developed and applied to quantify eicosanoids in human various fluids, demonstrating its suitability to assess eicosanoid biomarkers in human clinical trials.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Cromatografia Líquida/métodos , Eicosanoides/análise , Escarro/química , Espectrometria de Massas em Tandem/métodos , Eicosanoides/sangue , Eicosanoides/metabolismo , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
6.
Surg Endosc ; 32(2): 805-812, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28779240

RESUMO

BACKGROUND: Bile acids (BAs) are post-prandial hormones that play an important role in glucose and lipid homeostasis as well as energy expenditure. Total and glycine-amidated BAs increase after sleeve gastrectomy (SG) and correlate to improved metabolic disease. No specific bile acid subtype has been shown conclusively to mediate the weight loss effect. Therefore, the objective of this study was to prospectively evaluate the comprehensive changes in meal-stimulated BAs after SG and determine if a specific change in the BA profile correlates to the early weight loss response. METHODS: Patients were prospectively enrolled at the University of Nebraska Medical Center who were undergoing a SG for treatment of morbid obesity. Primary and secondary plasma bile acids and their amidated (glycine, G-, or taurine, T-) subtypes were measured at fasting, 30 and 60 min after a liquid meal performed pre-op, and at 6 and 12 weeks post-op. Area under the curve (AUC) was calculated for the hour meal test for each bile acid subtype. BAs that were significantly increased post-op were correlated to body mass index (BMI) loss. RESULTS: Total BA AUC was significantly increased at 6 (p < 0.01) and 12 weeks post-op (p < 0.01) compared to pre-operative values. The increase in total BA AUC was due to a statistically significant increase in G-BAs. Nine different BA AUC subtypes were significantly increased at both 6 and 12 weeks post-op. Increased total and G-chenodeoxycholic acid AUC was significantly correlated to the 6 week BMI loss (p = 0.03). Increased G-hyocholic acid was significantly correlated to increased weight loss at both 6 (p = 0.05) and 12 weeks (p = 0.006). CONCLUSIONS: SG induced an early and persistent post-prandial surge in multiple bile acid subtypes. Increased G-hyocholic consistently correlated with greater early BMI loss. This study provides evidence for a role of BAs in the surgical weight loss response after SG.


Assuntos
Ácidos Cólicos/sangue , Gastrectomia , Redução de Peso , Ácidos e Sais Biliares/sangue , Índice de Massa Corporal , Jejum , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Período Pós-Prandial , Estudos Prospectivos
7.
Drug Metab Dispos ; 45(7): 721-733, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396527

RESUMO

In the search for novel bile acid (BA) biomarkers of liver organic anion-transporting polypeptides (OATPs), cynomolgus monkeys received oral rifampicin (RIF) at four dose levels (1, 3, 10, and 30 mg/kg) that generated plasma-free Cmax values (0.06, 0.66, 2.57, and 7.79 µM, respectively) spanning the reported in vitro IC50 values for OATP1B1 and OATP1B3 (≤1.7 µM). As expected, the area under the plasma concentration-time curve (AUC) of an OATP probe drug (i.v. 2H4-pitavastatin, 0.2 mg/kg) was increased 1.2-, 2.4-, 3.8-, and 4.5-fold, respectively. Plasma of RIF-dosed cynomolgus monkeys was subjected to a liquid chromatography-tandem mass spectrometry method that supported the analysis of 30 different BAs. Monkey urine was profiled, and we also determined that the impact of RIF on BA renal clearance was minimal. Although sulfated BAs comprised only 1% of the plasma BA pool, a robust RIF dose response (maximal ≥50-fold increase in plasma AUC) was observed for the sulfates of five BAs [glycodeoxycholate (GDCA-S), glycochenodeoxycholate (GCDCA-S), taurochenodeoxycholate, deoxycholate (DCA-S), and taurodeoxycholate (TDCA-S)]. In vitro, RIF (≤100 µM) did not inhibit cynomolgus monkey liver cytosol-catalyzed BA sulfation and cynomolgus monkey hepatocyte-mediated uptake of representative sulfated BAs (GDCA-S, GCDCA-S, DCA-S, and TDCA-S) was sodium-independent and inhibited (≥70%) by RIF (5 µM); uptake of taurocholic acid was sensitive to sodium removal (74% decrease) and relatively refractory to RIF (≤21% inhibition). We concluded that sulfated BAs may serve as sensitive biomarkers of cynomolgus monkey OATPs and that exploration of their utility as circulating human OATP biomarkers is warranted.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Macaca fascicularis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rifampina/farmacologia , Sulfatos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Quinolinas/farmacologia
8.
Bioorg Med Chem ; 25(6): 1963-1975, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28238512

RESUMO

Multipronged approach was used to synthesize a library of diverse C-8 cyclopentyl hypoxanthine analogs from a common intermediate III. Several potent and selective compounds were identified and evaluated for pharmacokinetic (PK) properties in Wistar rats. One of the compounds 14 with acceptable PK parameters was selected for testing in in vivo primary acute diuresis model. The compound demonstrated significant diuretic activity in this model.


Assuntos
Antagonistas do Receptor A1 de Adenosina/química , Antagonistas do Receptor A1 de Adenosina/farmacologia , Hipoxantinas/química , Hipoxantinas/farmacologia , Antagonistas do Receptor A1 de Adenosina/síntese química , Antagonistas do Receptor A1 de Adenosina/farmacocinética , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Desenho de Fármacos , Células HEK293 , Humanos , Hipoxantinas/síntese química , Hipoxantinas/farmacocinética , Masculino , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Ensaio Radioligante , Ratos , Ratos Wistar
9.
J Med Chem ; 60(2): 681-694, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28055204

RESUMO

Our initial structure-activity relationship studies on 7-methoxy-4-morpholino-benzothiazole derivatives featured by aryloxy-2-methylpropanamide moieties at the 2-position led to identification of compound 25 as a potent and selective A2A adenosine receptor (A2AAdoR) antagonist with reasonable ADME and pharmacokinetic properties. However, poor intrinsic solubility and low to moderate oral bioavailability made this series unsuitable for further development. Further optimization using structure-based drug design approach resulted in discovery of potent and selective adenosine A2A receptor antagonists bearing substituted 1-methylcyclohexyl-carboxamide groups at position 2 of the benzothiazole scaffold and endowed with better solubility and oral bioavailability. Compounds 41 and 49 demonstrated a number of positive attributes with respect to in vitro ADME properties. Both compounds displayed good pharmacokinetic properties with 63% and 61% oral bioavailability, respectively, in rat. Further, compound 49 displayed oral efficacy in 6-OHDA lesioned rat model of Parkinson diseases.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Benzotiazóis/farmacologia , Cicloexanóis/farmacologia , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/síntese química , Antagonistas do Receptor A2 de Adenosina/farmacocinética , Administração Oral , Animais , Antiparkinsonianos/síntese química , Antiparkinsonianos/farmacocinética , Antiparkinsonianos/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/farmacocinética , Cicloexanóis/síntese química , Cicloexanóis/farmacocinética , Desenho de Fármacos , Células HEK293 , Humanos , Levodopa/farmacologia , Masculino , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Ratos Wistar , Relação Estrutura-Atividade
10.
J Pharm Biomed Anal ; 128: 426-437, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27344632

RESUMO

Accurate quantitative analysis of endogenous analytes is essential for several clinical and non-clinical applications. LC-MS/MS is the technique of choice for quantitative analyses. Absolute quantification by LC/MS requires preparing standard curves in the same matrix as the study samples so that the matrix effect and the extraction efficiency for analytes are the same in both the standard and study samples. However, by definition, analyte-free biological matrices do not exist for endogenous compounds. To address the lack of blank matrices for the quantification of endogenous compounds by LC-MS/MS, four approaches are used including the standard addition, the background subtraction, the surrogate matrix, and the surrogate analyte methods. This review article presents an overview these approaches, cite and summarize their applications, and compare their advantages and disadvantages. In addition, we discuss in details, validation requirements and compatibility with FDA guidelines to ensure method reliability in quantifying endogenous compounds. The standard addition, background subtraction, and the surrogate analyte approaches allow the use of the same matrix for the calibration curve as the one to be analyzed in the test samples. However, in the surrogate matrix approach, various matrices such as artificial, stripped, and neat matrices are used as surrogate matrices for the actual matrix of study samples. For the surrogate analyte approach, it is required to demonstrate similarity in matrix effect and recovery between surrogate and authentic endogenous analytes. Similarly, for the surrogate matrix approach, it is required to demonstrate similar matrix effect and extraction recovery in both the surrogate and original matrices. All these methods represent indirect approaches to quantify endogenous compounds and regardless of what approach is followed, it has to be shown that none of the validation criteria have been compromised due to the indirect analyses.


Assuntos
Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Guias como Assunto , Estados Unidos , United States Food and Drug Administration , Estudos de Validação como Assunto
11.
Xenobiotica ; 45(10): 858-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25869245

RESUMO

1. We investigated the mechanisms responsible for the in vivo instability of a benzofurazan compound BI-94 (NSC228148) with potent anti-cancer activity. 2. BI-94 was stable in MeOH, water, and in various buffers at pHs 2.5-5, regardless of the buffer composition. In contrast, BI-94 was unstable in NaOH and at pHs 7-9, regardless of the buffer composition. BI-94 disappeared immediately after spiking into mice, rat, monkey, and human plasma. BI-94 stability in plasma can be only partially restored by acidifying it, which indicated other mechanisms in addition to pH for BI-94 instability in plasma. 3. BI-94 formed adducts with the trapping agents, glutathione (GSH) and N-acetylcysteine (NAC), in vivo and in vitro via nucleophilic aromatic substitution reaction. The kinetics of adduct formation showed that neutral or physiological pHs enhanced and accelerated GSH and NAC adduct formation with BI-94, whereas acidic pHs prevented it. Therefore, physiological pHs not only altered BI-94 chemical stability but also enhanced adduct formation with endogenous nucleophiles. In addition, adduct formation with human serum albumin-peptide 3 (HSA-T3) at the Cys34 position was demonstrated. 4. In conclusion, BI-94 was unstable at physiological conditions due to chemical instability and irreversible binding to plasma proteins.


Assuntos
Antineoplásicos/farmacocinética , Proteínas Sanguíneas/metabolismo , Oxidiazóis/metabolismo , Sulfonas/metabolismo , Acetilcisteína/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Estabilidade de Medicamentos , Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos BALB C , Estrutura Molecular , Albumina Sérica/metabolismo , Espectrometria de Massas em Tandem
12.
Pharm Res ; 32(3): 1028-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25223962

RESUMO

PURPOSE: Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. METHODS: Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. RESULTS: X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. CONCLUSIONS: Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Reagentes de Ligações Cruzadas/química , Portadores de Fármacos , Etilenodiaminas/química , Poloxâmero/química , Estilbenos/administração & dosagem , Administração Intravenosa , Animais , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Células Cultivadas , Química Farmacêutica , Relação Dose-Resposta a Droga , Estudos de Viabilidade , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C , Micelas , Solubilidade , Estilbenos/sangue , Estilbenos/química , Estilbenos/farmacocinética , Tecnologia Farmacêutica/métodos
13.
Toxicol Sci ; 143(2): 296-307, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344562

RESUMO

The role of bile acids (BAs) as biomarkers for liver injury has been proposed for decades. However, the large inter- and intra-individual variability of the BA profile has prevented its clinical application. To this end, we investigated the effect of covariates such as food, gender, age, BMI, and moderate alcohol consumption on the BA profile in healthy human subjects. The BA profile was characterized by the calculation of indices that describe the composition, sulfation, and amidation of total and individual BAs. Both inter- and intra-individual variabilities of BA indices were low in serum and even lower in urine compared with those of absolute concentrations of BAs. Serum BA concentrations increased with consumption of food, whereas urinary BA concentrations were mildly affected by food. Gender differences in the urinary and serum BA profile were minimal. The serum and urinary BA profiles were also not affected by age. BMI showed minimal effect on the urine and serum BA profile. Moderate alcohol consumption did not have a significant effect on the BA profile in both urine and serum. When the effect of the type of alcohol was studied, the results indicate that moderate drinking of beer does not affect BA concentrations and has minimal effect on BA indices, whereas moderate wine consumption slightly increases BA concentrations without affecting the BA indices. In summary, urinary BA indices showed lower variability and higher stability than absolute BA concentrations in serum and showed minimal changes to covariate effects suggesting their utility as biomarkers in clinic.


Assuntos
Amidas/urina , Ácidos e Sais Biliares/urina , Hepatopatias/urina , Sulfatos/urina , Adulto , Fatores Etários , Idoso , Consumo de Bebidas Alcoólicas/urina , Ácidos e Sais Biliares/sangue , Ácidos e Sais Biliares/química , Biomarcadores/urina , Interpretação Estatística de Dados , Estabilidade de Medicamentos , Feminino , Voluntários Saudáveis , Humanos , Hepatopatias/sangue , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
14.
Toxicol Sci ; 143(2): 308-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25344563

RESUMO

Hepatobiliary diseases result in the accumulation of bile acids (BAs) in the liver, systemic blood, and other tissues leading to an unfavorable prognosis. The BA profile was characterized by the calculation of indices that describe the composition, sulfation, and amidation of total and individual BAs. Comparison of the urinary BA profiles between healthy subjects and patients with hepatobiliary diseases demonstrated significantly higher absolute concentrations of individual and total BAs in patients. The percentage sulfation of some individual BAs were different between the two groups. The percentage amidation of overall and most individual BAs was higher in patients than controls. The percentage of primary BAs (CDCA and CA) was higher in patients, whereas the percentage of secondary BAs (DCA and LCA) was lower in patients. BA indices belonging to percentage amidation and percentage composition were better associated with the severity of the liver disease as determined by the model for end-stage liver disease (MELD) score and disease compensation status compared with the absolute concentrations of individual and total BAs. In addition, BA indices corresponding to percentage amidation and percentage composition of certain BAs demonstrated the highest area under the receiver operating characteristic (ROC) curve suggesting their utility as diagnostic biomarkers in clinic. Furthermore, significant increase in the risk of having liver diseases was associated with changes in BA indices.


Assuntos
Amidas/urina , Ácidos e Sais Biliares/urina , Doenças Biliares/urina , Hepatopatias/urina , Sulfatos/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Ácidos e Sais Biliares/química , Biomarcadores/urina , Estudos de Casos e Controles , Interpretação Estatística de Dados , Feminino , Voluntários Saudáveis , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Antimicrob Agents Chemother ; 58(12): 7510-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288084

RESUMO

The drug delivery platform for folic acid (FA)-coated nanoformulated ritonavir (RTV)-boosted atazanavir (FA-nanoATV/r) using poloxamer 407 was developed to enhance cell and tissue targeting for a range of antiretroviral drugs. Such formulations would serve to extend the drug half-life while improving the pharmacokinetic profile and biodistribution to reservoirs of human immunodeficiency virus (HIV) infection. To this end, we now report enhanced pharmacokinetics and drug biodistribution with limited local and systemic toxicities of this novel nanoformulation. The use of FA as a targeting ligand for nanoATV/r resulted in plasma and tissue drug concentrations up to 200-fold higher compared to equimolar doses of native drug. In addition, ATV and RTV concentrations in plasma from mice on a folate-deficient diet were up to 23-fold higher for mice administered FA-nanoATV/r than for mice on a normal diet. Compared to earlier nanoATV/r formulations, FA-nanoATV/r resulted in enhanced and sustained plasma and tissue ATV concentrations. In a drug interaction study, ATV plasma and tissue concentrations were up to 5-fold higher in mice treated with FA-nanoATV/r than in mice treated with FA-nanoATV alone. As observed in mice, enhanced and sustained plasma concentrations of ATV were observed in monkeys. NanoATV/r was associated with transient local inflammation at the site of injection. There were no systemic adverse reactions associated with up to 10 weeks of chronic exposure of mice or monkeys to FA-nanoATV/r.


Assuntos
Fármacos Anti-HIV/farmacocinética , Portadores de Fármacos/farmacocinética , Ácido Fólico/química , Nanoestruturas , Oligopeptídeos/farmacocinética , Piridinas/farmacocinética , Ritonavir/farmacocinética , Animais , Fármacos Anti-HIV/sangue , Sulfato de Atazanavir , Esquema de Medicação , Portadores de Fármacos/química , Composição de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Ácido Fólico/metabolismo , Alimentos Formulados , Meia-Vida , Humanos , Injeções Intramusculares , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/química , Oligopeptídeos/sangue , Poloxâmero/química , Piridinas/sangue , Ritonavir/sangue , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...