Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 10(1)2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669588

RESUMO

Jatropha curcas is an important perennial, drought tolerant plant that has been identified as a potential biodiesel crop. We report here the hybrid de novo genome assembly of J. curcas generated using Illumina and PacBio sequencing technologies, and identification of quantitative loci for Jatropha Mosaic Virus (JMV) resistance. In this study, we generated scaffolds of 265.7 Mbp in length, which correspond to 84.8% of the gene space, using Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis. Additionally, 96.4% of predicted protein-coding genes were captured in RNA sequencing data, which reconfirms the accuracy of the assembled genome. The genome was utilized to identify 12,103 dinucleotide simple sequence repeat (SSR) markers, which were exploited in genetic diversity analysis to identify genetically distinct lines. A total of 207 polymorphic SSR markers were employed to construct a genetic linkage map for JMV resistance, using an interspecific F2 mapping population involving susceptible J. curcas and resistant Jatropha integerrima as parents. Quantitative trait locus (QTL) analysis led to the identification of three minor QTLs for JMV resistance, and the same has been validated in an alternate F2 mapping population. These validated QTLs were utilized in marker-assisted breeding for JMV resistance. Comparative genomics of oil-producing genes across selected oil producing species revealed 27 conserved genes and 2986 orthologous protein clusters in Jatropha. This reference genome assembly gives an insight into the understanding of the complex genetic structure of Jatropha, and serves as source for the development of agronomically improved virus-resistant and oil-producing lines.


Assuntos
Resistência à Doença , Jatropha/genética , Locos de Características Quantitativas , Geminiviridae , Jatropha/imunologia , Jatropha/virologia , Repetições de Microssatélites
2.
Sci Rep ; 6: 28211, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324275

RESUMO

DNA, in addition to the canonical B-form, can acquire a variety of alternate structures, such as G-quadruplexes. These structures have been implicated in several cellular processes in animals. In this study, we identified different types of G-quadruplex forming sequences (GQSes) in 15 sequenced plants and analyzed their distribution in various genomic features, including gene body, coding, intergenic and promoter regions. G2-type GQSes were most abundant in all the plant species analyzed. A strong association of G3-type GQSes with intergenic, promoter and intronic regions was found. However, G2-type GQSes were enriched in genic, CDS, exonic and untranslated regions. Further, we identified GQSes present in the conserved genes among monocots and dicots. The genes involved in development, cell growth and size, transmembrane transporter, and regulation of gene expression were found to be significantly enriched. In the promoter region, we detected strong co-occurrence of Telobox, ERF, MYB, RAV1B and E2F motifs with GQSes. Further, we validated the structure formation of several plant GQSes, demonstrated their effect on stalling in-vitro replication and revealed their interaction with plant nuclear proteins. Our data provide insights into the prevalence of GQSes in plants, establish their association with different genomic features and functional relevance.


Assuntos
DNA de Plantas/genética , Quadruplex G , Plantas/genética , Animais , Regulação da Expressão Gênica , Genoma de Planta/genética , Humanos , Íntrons/genética , Estrutura Molecular , Regiões Promotoras Genéticas/genética
3.
Sci Rep ; 6: 19228, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26759178

RESUMO

Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea.


Assuntos
Cicer/fisiologia , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Salinidade , Transcriptoma , Adaptação Biológica , Análise por Conglomerados , Biologia Computacional/métodos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Fenótipo , Reprodutibilidade dos Testes , Estresse Fisiológico/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA