Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 96: 105785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38266663

RESUMO

Secondary metabolites from medicinal plants have a well-established therapeutic potential, with many of these chemicals having specialized medical uses. Isoflavonoids, a type of secondary metabolite, have little cytotoxicity against healthy human cells, making them interesting candidates for cancer treatment. Extensive research has been conducted to investigate the chemo-preventive benefits of flavonoids in treating various cancers. Biochanin A (BA), an isoflavonoid abundant in plants such as red clover, soy, peanuts, and chickpeas, was the subject of our present study. This study aimed to determine how BA affected glucose-6-phosphate dehydrogenase (G6PD) in human lung cancer cells. The study provides meaningful insight and a significant impact of BA on the association between metastasis, inflammation, and G6PD inhibition in A549 cells. Comprehensive in vitro tests revealed that BA has anti-inflammatory effects. Molecular docking experiments shed light on BA's high binding affinity for the G6PD receptor. BA substantially decreased the expression of G6PD and other inflammatory and metastasis-related markers. In conclusion, our findings highlight the potential of BA as a therapeutic agent in cancer treatment, specifically by targeting G6PD and related pathways. BA's varied effects, which range from anti-inflammatory capabilities to metastasis reduction, make it an appealing option for future investigation in the development of new cancer therapeutics.


Assuntos
Anti-Inflamatórios , Carcinoma Pulmonar de Células não Pequenas , Genisteína , Neoplasias Pulmonares , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Genisteína/farmacologia , Genisteína/uso terapêutico , Glucosefosfato Desidrogenase , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular
2.
J Biomol Struct Dyn ; : 1-21, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357434

RESUMO

Due to the presence of several active secondary metabolites, the traditional Indian and Chinese medicinal herb Acorus calamus L. has been utilized for both medical and culinary purposes since ancient times. A recent report has underscored the promising cytotoxic effect of A. calamus leaves extract against non-small cell lung cancer A549 cells. Thus, we want to separate the bioactive substance from the hydromethanolic extract of A. calamus leaves in the current investigation. Thin-layer chromatography was used to separate the compounds and different spectroscopic methods (UV, FTIR, NMR, and LCMS/MS) were used for the structure prediction. α-asarone was found to be the main bioactive compound present and it was isolated from A. calamus leaves extract. It exerted a good cytotoxic effect with an IC50 value of 21.43 ± 1.27 µM against A549 cells and IC50 value of 324.12 ± 1.32 µM against WI-38 cells. The induction of apoptosis in A549 cells by α-asarone was reaffirmed by the diverse differential staining methods including DAPI, Acridine Orange/Ethidium Bromide, and Giemsa staining. Additionally, α-asarone induced mitochondrial membrane potential (ΔΨm) dissipation with a concomitant increase in the production of ROS. Furthermore, it also increased expressions of caspase-3, caspase-9, caspase-8, DR4, and DR5 genes in A549 cells. In conclusion, α-asarone-induced apoptotic cell death in non-small lung cancer cells (A549) as a result of loss of mitochondrial function, increased ROS production, subsequent activation of an internal and extrinsic caspase pathway, and altered expression of genes controlling apoptosis. As a whole, α-asarone is a plausible therapeutic agent for managing lung cancer. HIGHLIGHTSIsolation of bioactive compound from hydromethanolic leaves extract of Acorus calamus L. by thin layer chromatography.Structural elucidation of the bioactive compound was carried out using different methods like UV analysis, FTIR, NMR, and LC-MS/MS analysis.A plausible mode of action revealed that α-asarone can induce apoptosis in lung cancer cells (A549).Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 39(18): 7150-7159, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795152

RESUMO

Pyrazole derivatives are known to be as non-steroidal anti-inflammatory drugs (NSAID). Celecoxib is the pioneer sulfonamide being pyrazole derivative COX-2 inhibitors, which used to treat pain and inflammation; they may also have a role in cancer prevention. In the present investigation, a series of arylidene analogues (NDP-4011 to NDP-4016) were synthesized by the condensation of 4-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl) benzenesulfonamide (I) with various substituted aromatic aldehydes in ethanol using a catalytic amount of piperidine. All the synthesized compounds were well characterized by IR, 1H NMR, 13C NMR and mass spectrometry. The cytotoxicity of synthesized compounds was tested on the NRK-52E cell line. From which NDP-4011, NDP-4012, NDP-4013, NDP-1015 and NDP-4016 were found to have higher cytotoxicity whereas NDP-4014 showed less cytotoxicity compared to Celecoxib. The in silico pharmacokinetic parameters of compounds were evaluated to check their candidature as a drug. Molecular docking was carried out on COX-2 structures, which revealed that NDP-4011 to NDP-4016 targets allosteric binding site similar to the binding mode of the selective COX inhibitor Celecoxib. Furthermore, results of in vitro COX-2 inhibition assay supports arylidene analogues as COX-2 inhibitors.


Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Anti-Inflamatórios não Esteroides/farmacologia , Celecoxib , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 25(20): 5396-5406, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28789907

RESUMO

Benzothiazole analogues are of interest due to their potential activity against malarial and microbial infections. In search of suitable antimicrobial and antimalarial agents, we report here the synthesis, characterization and biological activities of benzothiazole analogues (J 1-J 10). The molecules were characterized by IR, Mass, 1H NMR, 13C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains; the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds J 1, J 2, J 3, J 5 and J 6 were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR, computational and in vitro studies were carried out to examine their candidatures as lead dihydrofolate reductase inhibitors.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Benzotiazóis/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antimaláricos/síntese química , Antimaláricos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos , Teoria Quântica , Schizosaccharomyces/citologia , Schizosaccharomyces/efeitos dos fármacos , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo
5.
Biomed Pharmacother ; 92: 491-500, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28575806

RESUMO

A number of drugs as well as lead molecules are isolated from natural sources. Phytol is one of such lead molecule belongs to terpenes group distributed widely in medicinal plants. In the present work, we investigated the cytotoxic behavior of phytol on human lung carcinoma cells (A549). Phytol was found to cause characteristic apoptotic morphological changes and generation of ROS in A549 cells. The mechanism of phytol involved the activation of TRAIL, FAS and TNF-α receptors along with caspase 9 and 3. In silico molecular docking studies revealed that phytol has a good binding affinity with glucose-6-phosphate dehydrogenase (G6PD), which is known to promote tumor proliferation. The ability of phytol to become potential drug candidate has been revealed from the pharmacokinetic study performed in the present study.


Assuntos
Caspase 3/biossíntese , Caspase 9/biossíntese , Glucosefosfato Desidrogenase/metabolismo , Neoplasias Pulmonares/metabolismo , Fitol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Humanos , Fitol/química , Fitol/uso terapêutico , Estrutura Secundária de Proteína , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor fas/metabolismo
6.
Bioorg Med Chem ; 25(15): 4064-4075, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28634040

RESUMO

1,2,4-Triazole and 1,3,4-oxadiazole analogues are of interest due to their potential activity against microbial and malarial infections. In search of suitable antimicrobial and antimalarial compounds, we report here the synthesis, characterization and biological activities of 1,2,4-triazole and 1,3,4-oxadiazole analogues (SS 1-SS 10). The molecules were characterized by IR, mass, 1H NMR, 13C NMR and elemental analysis. The in vitro antimicrobial activity was investigated against pathogenic strains, the results were explained with the help of DFT and PM6 molecular orbital calculations. In vitro cytotoxicity and genotoxicity of the molecules were studied against S. pombe cells. In vitro antimalarial activity was studied. The active compounds were further evaluated for enzyme inhibition efficacy against the receptor Pf-DHFR computationally as well as in vitro to prove their candidature as lead dihydrofolate reductase inhibitors.


Assuntos
Anti-Infecciosos/farmacologia , Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Oxidiazóis/química , Triazóis/química , Simulação de Acoplamento Molecular , Oxidiazóis/farmacologia , Análise Espectral/métodos , Triazóis/farmacologia
7.
Eur J Med Chem ; 126: 894-909, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27988464

RESUMO

Novel series of 2-morpholinoquinoline scaffolds (6a-n), containing the 1,2,4-oxadiazole and moiety, was designed and synthesized in good yield (76-86%). The synthesized compounds were screened for their preliminary in vitro antimicrobial activity against a panel of pathogenic strains of bacteria and fungi. Molecular docking and pharmacokinetic study were carried out for the prepared compounds. The cytotoxicity of the synthesized compounds was tested at different concentrations using bioassay of S. pombe cells at the cellular level. The effect of synthesized compounds on the DNA integrity of S. pombe was observed on agarose gel. Compounds 6d, 6e, 6g, 6h, 6j and 6n exhibited excellent antimicrobial potency as compared to the standard drugs (i.e Ampicillin, Norfloxacin, Chloramphenicol, Ciprofloxacin). Compounds 6d, 6e, 6g, 6k and 6n were found to have significant antifungal activity as compared to griseofulvin. Compounds 6f, 6i, 6k, 6l were found very less cytotoxic, while compounds 6d, 6e, 6g, 6h were found to exhibit maximum toxicity. The rest of the synthesized compounds were found to be moderately toxic.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Oxidiazóis/química , Quinolinas/síntese química , Quinolinas/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Técnicas de Química Sintética , Avaliação Pré-Clínica de Medicamentos , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Quinolinas/química , Quinolinas/metabolismo , Relação Estrutura-Atividade
8.
Bioorg Chem ; 68: 265-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27616159

RESUMO

A series of eight compounds diethyl-3-methyl-5-(6-methyl-2-thioxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxamido) thiophene-2,4-dicarboxilate (KM10-17) analogues have been prepared by conventional methods and characterized by IR, Mass, NMR and elemental analysis. In silico docking studies on Human topoisomerase IIbeta (PDB Id: 3QX3) have been performed for all molecules (KM10-17) synthesized. The compounds were tested for in vitro anti-proliferative activity on VERO and 786-O cell lines. Out of all the synthesized compounds, KM11 &KM16 showed moderate activity on both cell lines. In vitro anti-microbial activity was also checked against Bacillus subtilis (BS), Staphylococcus aurous (SA), Pseudomonas aeruginosa (PA), Escherichia coli (EC) and Candida albicans (CA) by well diffusion method. The compound KM11 was found to have highest zone of inhibition against BS, SA, PA and EC. The molecules KM13 and KM16 exhibited good activity against CA. The compounds KM14 and KM16 indicated good zone of inhibition against BS.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Pirimidinas/farmacologia , Tiofenos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bacillus subtilis/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA