Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; : e2405953, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301996

RESUMO

The interface between NiO and perovskite in inverted perovskite solar cells (PSCs) is a major factor that can limit device performance due to defects and inappropriate redox reactions, which cause nonradiative recombination and decrease in open-circuit voltage (VOC). In the present study, a novel approach is used for the first time, where an amino acid (glycine (Gly), alanine (Ala), and aminobutyric acid (ABA))-complexed NiO are used as interface modifiers to eliminate defect sites and hydroxyl groups from the surface of NiO. The Ala-complexed NiO suppresses interfacial non-radiative recombination, improves the perovskite layer quality and better energy band alignment with the perovskite, resulting in improved charge transfer and reduced recombination. The incorporation of the Ala-complexed NiO leads to a PCE of 20.27% with enhanced stability under the conditions of ambient air, light soaking, and heating to 85 °C, as it retains over 82%, 85%, and 61% of its initial PCE after 1000, 500, and 350 h, respectively. The low-temperature technique also leads to the fabrication of a NiO thin film that is suitable for flexible PSCs. The Ala-complexed NiO is fabricated on the flexible substrate and achieved 17.12% efficiency while retaining 71% of initial PCE after 5,000 bending.

2.
Environ Sci Pollut Res Int ; 31(21): 31562-31576, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632202

RESUMO

The escalating demand for the antibiotic drug tetracycline hydrochloride (TCH) contributes to an increased release of its residues into land and water bodies, which poses risks to both aquatic life and human health. Therefore, it is precedence to effectively degrade TCH residues to protect environment from their long-term impacts. In this aspect, the present study entails the synthesis of zirconia (ZrO2) nanostructures and focuses on the enhancement in the catalytic performance of ZrO2 nanostructures by employing reduced graphene oxide (RGO) as a solid support to synthesize ZrO2-enriched RGO-based photocatalysts (ZrO2-RGO) for the degradation of TCH. The study delves into comprehensive spectroscopic and microscopic investigations and their photodegradation assessments. Powder XRD and HR-TEM studies depicted the phase crystallinity and also displayed uniform distribution of ZrO2 nanostructures with spherical morphology within ZrO2-RGO. This corresponds to high surface-to-volume ratios, providing a substantial number of active sites for light absorption and generation of e--h+ pairs. Moreover, the heterojunctions created between RGO and ZrO2 nanostructures promoted the interspecies electron transfer which prolonged the recombination time of e- and h+ than pure ZrO2 nanostructures, accounted for enhanced degradation of TCH using ZrO2-RGO. The photocatalytic activity of as-synthesized materials were examined under visible and UV light irradiation. The degradation efficiency of ~ 73.82% was achieved using ZrO2-RGO-based photocatalyst with rate constant k = 0.007023 min-1 under visible-light illumination. Moreover, under UV-light, the degradation rate was explicated to be k = 0.01017 min-1 with ~ 85.56% degradation of TCH antibiotics within 180 mins. Hence, the synthesized ZrO2-enriched RGO-based photocatalysts represents a promising potential for the effective degradation of pharmaceutical compounds, particularly TCH under visible and UV-light irradiation.


Assuntos
Grafite , Nanoestruturas , Fotólise , Tetraciclina , Zircônio , Grafite/química , Tetraciclina/química , Zircônio/química , Nanoestruturas/química , Catálise
3.
Small ; 20(24): e2311362, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38192000

RESUMO

For p-i-n perovskite solar cells (PSCs), nickel oxide (NiOx) hole transport layers (HTLs) are the preferred interfacial layer due to their low cost, high mobility, high transmittance, and stability. However, the redox reaction between the Ni≥3+ and hydroxyl groups in the NiOx and perovskite layer leads to oxidized CH3NH3 + and reacts with PbI in the perovskite, resulting in a large number of non-radiative recombination sites. Among various transition metals, an ultra-thin zinc nitride (Zn3N2) layer on the NiOx surface is chosen to prevent these redox reactions and interfacial issues using a simple solution process at low temperatures. The redox reaction and non-radiative recombination at the interface of the perovskite and NiOx reduce chemically by using interface modifier Zn3N2 to reduce hydroxyl group and defects on the surface of NiOx. A thin layer of Zn3N2 at the NiOx/perovskite interface results in a high Ni3+/Ni2+ ratio and a significant work function (WF), which inhibits the redox reaction and provides a highly aligned energy level with perovskite crystal and rigorous trap-passivation ability. Consequently, Zn3N2-modified NiOx-based PSCs achieve a champion PCE of 21.61%, over the NiOx-based PSCs. After Zn3N2 modification, the PSC can improve stability under several conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA